
Varovanie.
Článok nachádzajúci sa na nasledujúcich stranách nie je vtip, jeho autor

to myslí smrteľne vážne. A už niekoľko rokov statočne odoláva akejkoľvek
snahe presvedčiť ho, že sú to chobotiny na entú :)

Úloha pre vás je začítať sa do článku a nájsť prvé miesto, kde to už nejde
zachrániť. (Do istého bodu by sa tie veci v článku dali poriadne formálne
spraviť, ale časom sa to zlomí a je z toho úlet. Kde presne?) Nebojte sa, nie
je to ďaleko :)

1

ar
X

iv
:0

80
6.

29
47

v8
 [

cs
.L

O
]

 1
0

Ju
l 2

00
9

P = NP

The Kleene-Rosser Paradox
The Liar’s Paradox

&
A Fuzzy Logic Programming Paradox

=⇒
SAT is (NOT) NP-complete

Rafee Ebrahim Kamouna
Email: rafee102000@yahoo.com

submitted to the ACM Transactions on Computation Theory

What is a Turing machine?

Imeptuous Fire,

Syntactico-Semantical!

Ice and Desire,

Computation wags on...

[Turing à la “Romeo & Juliet”]

Abstract

After examining the P versus NP problem against the Kleene-Rosser paradox
of the λ-calculus [94], it was found that it represents a counter-example to NP-
completeness. We prove that it contradicts the proof of Cook’s theorem. A logical
formalization of the liar’s paradox leads to the same result. This formalization
of the liar’s paradox into a computable form is a 2-valued instance of a fuzzy
logic programming paradox discovered in the system of [90]. Three proofs that
show that SAT is (NOT) NP-complete are presented. The counter-example
classes to NP-completeness are also counter-examples to Fagin’s theorem [36] and
the Immermann-Vardi theorem [89,110], the fundamental results of descriptive
complexity. All these results show that ZF6C is inconsistent.

1

http://arxiv.org/abs/0806.2947v8

1. Introduction and the Kleene-Rosser Paradox:

This paper examines well-known paradoxes against the fundamental question in
complexity theory, i.e. the P vs. NP problem. The Kleene-Rosser paradox of
the inconsistent λ-calculus discovered in 1935 and a computable formalization
of the liar’s paradox which is well-known to happen in natural languages. The
liar’s paradox formalization happens to be a 2-valued special case of a more
general multi-valued one. The later being the case of the fuzzy logic programming
paradox of the system in [90]. If the P versus NP problem was ever examined
against any of those paradoxes, it would have soon been discovered that it is a
straightforward counter-example to NP-completeness.

Let Lλ be the language defined by the following function when combined with
itself, thus kk:

k = (λx.¬(xx))

one then may deduce

kk = (λx.¬(xx))k = ¬(kk)

Obviously, the language Lλ is decidable and in P. However, it is obvious Lλ 6≤p

SAT, as how strings which are both “true” and “false” can be converted to strings
which are either “true” or “false”. The counter-argument that a Turing machine
cannot diagonalize against itself leads to the fact that Lλ would be a counter-
example to the the Church-Turing thesis instead of being a counter-example
to NP-completeness. It is implausible to consider such a simply computable
language as uncomputable. Also, writing Lλ as a series of infinite non-halting
computations simply ignores that it is programmably implemented and certainly
halts. The following proof shows that this paradox results in NP-completeness
undefinability when the language Lλ is assumed to exist.

Definition 1: Let LIARLang be the class of all languages written in the LIAR
logic system and FLPLang be the class of all languages written in the FLP logic
system (defined below), then the class SySBPD = {Lλ : Lλ ≡ The Kleene-
Rosser paradox, Lλ ∈ LIARLang, Lλ ∈ FLPLang}.

Definition 2: Let Mλ be a program that checks for paradoxes, i.e. a paradox
recognizer. A computation Mλ on wλ ∈ Lλ prints “Yes” if wλ is an instance of a
paradox, i.e. wλ = “True” iff wλ = “False” So:

1. Mλ accepts wλ ∈ Lλ iff wλ is paradoxical, otherwise:

2. Mλ rejects wλ ∈ Lλ iff wλ is satisfiable.

2

Theorem 1.1: (Main Theorem) SAT is NOT NP-complete.

The line of argumentation of the original proof of CNF SAT being NP-complete
is as follows as in [21] and quoted from [37]:

“Let A be a language in NP accepted by a non-deterministic Turing machine M :
Fix an input x. We will create a 3CNF formula φ that will be satisfiable if and
only if there is a proper tableau for M and x.”

Proof:

1. Let M = Mλ, A = Lλ, x = wλ.

2. =⇒Mλ accepts wλ.

3. SAT is NP-complete.

4. =⇒ [∀wλ ∈ Lλ ∃ a proper tableau for Mλ and wλ]⇐⇒ [φ is satisfiable].

5. =⇒ φ is satisfiable ⇐⇒ Mλ accepts wλ.

6. But wλ is paradoxical, as a paradox.

7. =⇒ φ is satisfiable ⇐⇒ wλ is paradoxical.

8. φ is satisfiable ⇐⇒ “False”.

9. φ is paradoxical.

10. 6 ∃ φ : φ is satisfiable.

11. SAT is (NOT) NP-complete.

Theorem 1.2: SAT is (NOT) NP-complete.

Proof:

1. SAT is NP-complete.

2. =⇒ ∀wij ∈ Li ∃ f(wij) = wSAT ∈ SAT.

3. Let wij = wλj , then ∃ f(wλj) = wSATj
.

4. wλj is “true” iff “false” while wSATj
is either “true” or “false”.

5. 6 ∃ f : f(wij) = wSAT ∀wλj.

6. SAT is (NOT) NP-complete.

3

Theorem 1.3: P = NP.

Proof:

1. SAT is (NOT) NP-complete.

2. =⇒ NP-complete = ∅.

3. =⇒ P = NP.

Thus, the Kleene-Rosser paradox known as early as 1935 is sufficient to overturn
all NP-completeness results. However, other logical languages may have para-
doxical behavior as shown below. Note the misconception of a Turing machine
cannot risk contradiction is due to considering it as an encoded integer with no
regard to its semantics. Obviously, no integer can form a paradox. A paradox is
an absolutely logical situation which is related to language. Some may transform
the Kleene-Rosser paradox as an example of an infinite loop. Concealing this
paradox into a physical Turing machine that does not halt would not eliminate
it as it is in the language. The liar’s paradox which exists in natural language
can be easily formalized as below leading to the same above result. Church’s
λ-calculus is equivalent to Turing machines among other computational models.

The Syntactico-Semantical Bi-Polar Disorder
Turing Machine Paradox

Since the P versus NP probnlem has all its roots in the mathematics founda-
tion crisis in the early XXth century, an attempt to examine the reason behind
these (negative) results introduce the “Syntactico-Semantical Bi-Polar Disorder”
explained below. The XXth century most important results were re-organized as
below:

1. Self-referential SySBPD:

(a) Russell’s paradox.

(b) The Liar’s paradox.

2. Gödel Completeness/Incompleteness SySBPD; note the relationship be-
tween the proof of his celebrated incompleteness theorem and the Liar’s
paradox.

3. Turing Decidability/Undecidability SySBPD.

4

4. Finiteness/Infiniteness SySBPD: results in finite model theory that suc-
ceed infinitely and fail finitely. Most importantly, Gödel’s completeness
theorem which is:

(a) Positive: Completeness/Incompleteness SySBPD.

(b) Negative: Finiteness/Infiniteness SySBPD.

All these SySBPD’s are instances of the “Syntactico-Semantical Prece-
dence/Principality Bi-Polar Disorder”. Note that Gödel completeness the-
orem is considered a positive results in automated deduction an related areas
while considered negative in finite model theory as it fails finitely.

1. Precedence: syntax definition precedes semantics:

[Syntax < Semantics]Precdence.

2. Principality: during computation the input takes various syntactic forms
where semantics is principal over syntax in every computation step:

[Semantics < Syntax]Principality.

3. (1) & (2) =⇒ [Syntax] <> [Semantics], i.e. Bi-Polar Disorder.

The question:“Are the XXth the only SySBPD’s” led to the discovery of all
recent results. Now, we have the Syntactico-Semantical Bi-Polar Disorder Turing
machine NP-completeness Paradox as:

SAT is NP-complete ⇐⇒ SAT is (NOT) NP-complete

which is simply because:

w is paradoxical ⇐⇒ Maccepts w ⇐⇒ A(w) is satisfiable

where A(w) [21]:

A(w) = B ∧ C ∧D ∧E ∧ F ∧G ∧H ∧ I

and because P i
s,t are propositional variables in A(w)

P i1
1,1 ∧ P i2

2,1 ∧ . . . P in
n,1 is satisfiable iff w is paradoxical

The reason for the paradox is that Cooks’s theorem is still true despite all the
results above and below of SAT being (NOT) NP-complete. Recent results
were obtained solely via logical syntactico-semantical proofs. On the other hand

5

Cook’s proof mixes the physical world with the mental world. The formula A(w)
in [21] consists of propositional symbols which refer to the physical nature of the
Turing machine to prove a property of the set of strings it processes. While the
formula is satisfiable from a physical point-of-view, it is not always the case from a
logical point-of-view. It is clear that the proof in [21] does not make an account of
the meaning of the string w when there is a reference of a computation M on input
w. A(w) is derived from the machine physical nature during the computation.
An example of those physical facts is that if the machine tape head is at the
location k, then the next computation must be either k + 1 or k − 1. This -
among many other similar thing - while being a true (physical) property of the
machine itself, it may not have implications on the properties of the language
being processed. This is the “Syntactic-Semantical Bi-Polar Disorder Turing
machine NP-completeness Paradox” which can be stated more clearly as:

“A logically satisfiable formula A(w) can always be constructed
from the logically paradoxical string w”

The source of this contradiction is w has no connection with physics, while A(w)
does have. They both meet in the realm of “Syntax” while they never do in
the realm of “Semantics”, hence a syntactico-semantical paradox, which is an
irreparable disorder of computation and mathematics. It is possible for a semantic
proof to overturn a syntactic one, but not in this case when the proof derives from
the physical properties of the non-detrministic Turing machine itself. Obviously,
no proof (syntactic or semantic) can overturn any physical fact, e.g. that if the
Turing machine head is at location k, then the next computation step must be
either at location k − 1 or at k + 1. This is a physical fact. The propositional
symbols constructed in the proof are mostly derived in this way.

2. The Liar’s Paradox:

The following theorem proves a formalization of the Liar’s paradox in a Prolog
style programming language. Thus, self-referential paradoxical languages can be
represented in a programming language as well as in the above inconsistent λ-
calculus (recursion vs. self-reference). It is to be noted that self-reference has
been removed from first-order logic deliberately a priori in order to avoid such
contradictions. However, its elimination does mean that those contradictions do
not exist in the languages (elements) of P and NP. Consider:

P = {L1, L2, L3, . . . , Li, Lj , Lk, . . .}.

Obviously, Lλ exists as some language in P as well as other paradoxical languages
like L ∈ LIAR below. It is of no help to preclude them.

Theorem 2.1: The Liar’s Paradox ≡ {English(John,False)}.

Proof:

6

1. The Liar’s Paradox ≡ {This sentence is False}.

2. =⇒ {This sentence is False} ≡ {A = A is False}.

3. =⇒ {English(John,False)} ≡ {A = A is False}.

4. =⇒ {This sentence is False} ≡ {English(John,False)}.

5. =⇒ The Liar’s Paradox ≡ {English(John,False)}.

The LIAR logic system has the same FLP [90] syntax and semantics but with
truth constants restricted only to two values. Its formulas would look like:
P (f(t), false), where f is a recursive function over the recursive term t. Simply,
the Prolog atom: English(John,False) would be a statement that asserts its own
falsehood if and only if it is true, hence a paradox. The first question to address
is such statements do exist or do not exist. The liar’s paradox do exist in natural
language and is well-known for more than two millennia. To assume it is not for-
malizable in any computable form would never mean that it does not exist. Such
an assumption would not stand the test of time against a self-referential question
such as P vs. NP which is itself a question in NP. The deliberate elimination
of self-reference that may have helped the development of logic would hinder the
progress of attacking this question. The reason is that in the development of a
logical language, or a class of languages in a logic system, no such a question
of whether an infinite class is equal/or not to another infinite class is addressed.
Further, in a logical language one is interested to remove any inconsistency a
priori. In attacking P vs. NP, one cannot assume the Kleene-Rosser paradox
above does not exist nor ignore its implications. Logical programming languages
with paradoxes can be developed like formalizing the Liar’s paradox above which
happens to be a 2-valued instance of the multi-valued fuzzy logic programming
paradox below.

3. The Fuzzy Logic Programming Paradox:

There is a vast literature with large number of results in both “Mathematical
Fuzzy Logic” and “Fuzzy Logic Programming”, (see the references). Mathemati-
cal fuzzy logic systems were developed by Hajek [50-87], Esteva [26,29-35], Godo
[37-49] and others. Systems like BL, Lukasiewicz, Gödel and Product logics
have been formulated with various rigorous properties and have become stan-
dard. Fuzzy logic programming and possibilistic logic programming systems in
the works of Godo and Alsinet et al. [1-18], Vojtas et al. [111-115] were devel-
oped with large number of soundness and completeness results with interesting
properties. Variations as the multi-adjoint logic programming was developed by

7

Medina et al. [98-101]. The huge number of results is clear and of course this is
not an exhaustive listing.

The first use of truth constants in the language syntax first appeared in Pavelka’s
logic [106] as early as 1979. Before that, truth was expressed only in the language
semantics as in Lukasiewicz and Kleene many-valued logics. Pavelka extended
Lukasiewicz logic with rational truth constants. Novak [102-105], in his weighted
inference systems developed a syntax of pairs: (formula, truth value). Expansions
of other logics with truth constants in Esteva et al. 2000, and recently in Esteva
et al. 2006 [23-25,27], and Savicky et al. 2006 [108]. In 2007, truth constants
appeared in Esteva et al. [28]. The work of Straccia et al. [19,20,96,107,109] in
fuzzy description logics employed truth constants as well. So, the idea of having
a truth constant in the language syntax is well-established.

A counter-example to the NP-completeness property written in FLP [90] lan-
guage is presented. A class of infinite number of languages is characterized -
SySBPD: the syntactico-semantical bi-polar disorder class including all para-
doxical languages of FLP as well as that of the liar’s paradox and λ-calculus.
Each element in this class constitutes a counter-example as well. A one-step com-
putation L is introduced to motivate the presentation. Theorem 3.1 establishes
the paradox and theorem 4.1 shows that L is decidable and L ∈ P . Theorem 4.2
establishes the counter-example and shows that SAT is NOT NP-complete using
the same proof of the Kleene-Rosser paradox.

First, we recall the fact the syntax of FLP is absolutely classical. All the well-
formed formulas of FLP are well-formed formulas of classical logic. However,
FLP uses non-classical semantics for the same classical syntax. First, the classi-
cal definition of an Herbrand interpretation and an Herbrand model are recalled.
Second, it is shown that if truth constants are allowed in the language syntax
in the sense of [90], then every Herbrand interpretation of any FLP language
is a model iff it is not a model, when the case of FLP collapses to classical
logic, i.e. µ = “0” or µ = “1”; the FLP paradox is the liar’s paradox. This is
the “Syntactico-Semantical Bi-Polar Disorder FLP Paradox”. All LIAR well-
formed formulas are FLP well-formed formulas. This is why refuting the FLP
paradox necessitates refuting its special 2-valued version which is the liar’s para-
dox. It is not easy to refute the liar’s paradox nor to show that it is impossible
to be formalized in a programming language resulting in the above discussed
consequences.

Definition 3.1: Let L be a language over an alphabet Σ containing at least one
constant symbol. The set UL of all ground terms constructed from functions and
constants in L is called the Herbrand universe of L. The set BL of all ground
atomic formulas over L is called the Herbrand base of L.

8

Definition 3.2: The Herbrand interpretation IL for a language L is a structure
IL ≡< Ic, If , Ip > whose domain of discourse is UL where:

1. ∀c ∈ L : c is a constant:
Ic(c) = c

.

2. ∀f ∈ L : f is a function symbol of arity n, and t1, t2, . . . , tn are terms:

If (f)(t1, t2, . . . , tn) = f(I(t1), . . . , I(tn))

3. ∀p ∈ L : p is a predicate of arity n:

Ip(p) : BL → {0, 1}

Definition 3.3: The Herbrand interpretation IL for a language L is a model iff
IL : BL → {1} ∧ BL 6→ {0}.

Let L be the classical logic program consisting of the single (ground) fact:

p(c1, c2, . . . , cn)←

and let cn = µ ∈ C ⊆ [0, 1] be a truth constant. If IL is an Herbrand interpre-
tation for L, then IL is a model iff it is not a model. IL interprets the predicate
symbol p (classically) as a relation between the domains from which the n-tuple
(c1, c2, . . . , cn) is extracted. The last member of the tuple cn is a real number
in a countable C ⊆ [0, 1]. When constant symbols are interpreted in classical
semantics, it banishes an argument of a predicate to be the truth constant of the
same predicate. FLP non-classical semantics enforces an argument of a predi-
cate to be a truth constant of the same predicate. Semantics of formal languages
are enforced in the same way as in natural languages. Since the string “main”
over the Latin alphabet is interpreted differently in English and French (the word
“main” in French means “hand”). Obviously,

Oxford(main) 6= Larousse(main)

ILClassical
(p) 6≡ ILF LP

(p)

Neither the English people may ask the French to follow Oxford dictionary, nor
the French may ask the English to follow Larousse. Forbidding arguments of a
predicate to be the truth constant of the same predicate is equally unacceptable.
Moreover, in the case of the P vs. NP question, the entire scientific community
is pre-occupied with ANY set of strings (a language) that may separate the two

9

classes. Usually, a set of strings in NP and not in P, hence the question is
settled. Let alone the self-referential nature of the question, i.e. P vs. NP is
a question in NP. So, if X is the decision problem X ≡ P =? NP, then X ∈
NP. But classes are (forbidden) to be elements, so such an argument is a meta-
mathematical/philosophical one (X is not a valid mathematical object). Just
consider an analogy of the question: x? = y, x ∈ N, y ∈ R. Obviously, this later
question is an ill-posed one.

For the above considerations, the author is not deterred to enforce such semantics
on the same syntax of classical logic, then examine the consequences. Forbidding
such semantics won’t help because both classes contain infinite number of lan-
guages. Any method to forbid such semantics can obviously be eliminated with
a counter-part to enforce whatever semantics to examine its implications to this
long outstanding question. In other words, a counter-argument against FLP non-
classical semantics should prove that such languages don’t exist at all. The fact
that it leads to paradoxical and inconsistent computations never means that these
computations are wrong or meaningless. The attached two meta-interpreters
work quite well meaningfully from a practical engineering point-of-view. The
reason for this is that in a logic programming system, the user is interested in
answer substitutions rather than logical consequences as in automatic theorem
proving. Cantor’s set theory has its famous paradoxes, one can never argue
it is wrong, though initially it was controversial. The following theorem proves
that languages written in FLP can have interpretations consisting of paradoxical
structures.

Theorem 3.1: Let L be the classical logic program consisting of the single
(ground) fact:

p(c1, c2, . . . , cn)←

and let cn = µ ∈ C ⊆ [0, 1] be a truth constant. If IL is an Herbrand interpreta-
tion for L, then IL is a model iff it is not a model.

Proof:

1. IL ≡ < Ic, If , Ip >≡< Ic, Ip >.

2. ⇒ Ic(c1) = c1.

3. ⇒ Ic(c2) = c2.

4. · · ·

5. · · ·

6. · · ·

10

7. ⇒ Icn−1
= cn−1.

8. ⇒ Ic(µ) = µ ∈ [0, 1].

9. ⇒ Ip ∈ {0, 1}.

10. ⇒ IL ≡ < Ic, Ip >.

11. ⇒ IL ≡ < Ic ∈ [0, 1], Ip ∈ {0, 1} >

12. ⇒ ∀Ic ∈]0, 1[, IL is a model iff it is not a model

4. The FLP Counter-Example to NP-completeness:

Consider an FLP program (when FLP is mentioned in this paper, it is meant
as defined in [90]). The definition of a fuzzy atom in FLP is:

p(t1, t2, . . . , tn, µ)

Where µ ∈ [0, 1] is the truth constant. This atom is a classical one despite the
weight attached to it. Consider the FLP program consisting of one fact:

Age-About-21(John,0.9)←

The syntax of this program constitutes a well-formed formula of classical logic
programming. Consider the goal:

← Age-About-21(John,µ).

This goal succeeds with two contradictory truth values, namely “1” and “0.9”. In
computation theory terms, this logic program is a Turing machine M that codes
the input string “John” with both “Yes” and “No” at the same time. One for the
truth value µ = “1” and the other for µ = “0.9”, and vice versa. In other words,
if the Turing machine halts in the qaccept state, its tape symbols imply that it is in
the qreject state. On the other hand, if it halts in the qreject state, its tape symbols
imply that it is in the qaccept state. This is the SySBPD “Syntactico-Semantical
Bi-Polar Disorder” paradox. Since the atom in FLP is a classical one despite the
weight attached to it, it is both classical and fuzzy. So, the SySBPD paradox
is due to the fact that:“p is fuzzy iff p is not fuzzy”, or “p is two-valued iff p is
many-valued” where p is an atom of FLP . The syntax/semantics dichotomy is
bi-polarity, and the paradox is the undesirable disorder.

Theorem 4.1: Let L be the language defined by the above program, then L is
decidable and L ∈ P .

Proof:

11

As in [21], tM(w) denotes the number of steps in the computation of M on input
w, and TM(n) the worst case run time of M :

TM(n) = max{tM (w)|w ∈ Σn}

where Σn is the set of all strings over Σ of length n. Let M be the Turing machine
associated with the one step computation defined above, clearly:

1. TM(n) = m ∈ N.

2. ⇒ tM(w) 6=∞.

3. ⇒ L is decidable.

4. TM(n) = m ∈ N ⇒ L ∈ P.

The computation M on any input to the above program certainly halts and L ∈
P.

Theorem 4.2: SAT is NOT NP-complete.
Let L over an alphabet Σ be the language defined by the FLP program above,
then L can NEVER be reduced to SAT, hence SAT is not NP-complete. The
same proof of theorem 1.1 applies.

Proof:

1. SAT is NP-complete.

2. ⇒ L ≤p SAT.

3. ⇒ ∃f : ∀x ∈ L⇔ f(x) ∈ SAT, [22].

4. x ∈ L⇒ ∀x, x is both accepted AND rejected by M .

5. y ∈ SAT ⇒ ∀y, y is either accepted OR rejected by M .

6. ⇒ 6 ∃ f : f(x) = y.

7. ⇒ L can NEVER be reduced to SAT.

8. ⇒ SAT is NOT NP-complete.

5. Why SAT is NOT NP-complete

Let L be the following Prolog program consisting of the single-fact:

Age− About(John, 0.9) ←

Running this program with any ground goal MUST generate contradictory truth
values:

12

1. Semantic:“1”, or “0”.

2. Syntactic:“0.9”.

There are only two possibilities that have no third:

1. L has an associated Turing machine M , or:

2. L does not have one; the counter-argument that it is impossible for a Turing
machine to diagonalize against itself.

Case (1): L has an associated Turing machine M

1. SAT Decision Problem:

The SAT decision function is R(F, x), assigning a truth value x for a
Boolean formula F .

(a) Input: Boolean Formula.

(b) Output: “1” or “0”.

2. L ∈ LIAR and L ∈ FLP Decision Problems:

Both decision problems form a relation that is not a function R(F, x, y),
assigning two distinct truth values, x (AND) y for an FLP , or LIAR
formula F . One truth value is syntactic “0.9” written above in the program.
The other is semantic. Any basic knowledge of logic is sufficient to view
both contradictory truth values.

(a) Input: FLP or LIAR Formula.

(b) Output:

i. “1”, FLP semantical truth-value; AND (not or):

ii. “0.9”, syntactical truth-value; or “0” in the case of the 2-valued
FLP , i.e. L ∈ LIAR.

Those two values are not only irreconcilable, but also irreducible into a
(single) truth value.

Now, the problem is how to write the reduction function f to reduce L to SAT:

L ≤p SAT

This is a counter-example argument that can be refuted by experiment. If the
reader gets angry at this, neither Einstein nor Popper (i.e. “Testability”) would.
Who finds himself angry should present the reduction function f reducing L to

13

SAT as a refutation to this counter-example. Obviously, this counter-example is
just a member of the SySBPD class (λ-calculus, FLP , LIAR and potentially
more) of infinite number of languages having the same property.

Case (2): L does not have an associated Turing machine, but L is computable on
the von Neumann machine. Then, this is a counter-example to the Church-Turing
thesis. The situation becomes:

L ∈ P⇐⇒ L 6∈ P

1. L ∈ P, as it is a one-step computation.

2. L 6∈ P, the class P is defined only on Turing machines.

The claim that L does not have an associated Turing machine should be proved
(physically) by building the machine and demonstrating its incapacity compared
to the von Neumann machine, i.e. L is not Turing-computable. The skeptic
should make a public demonstration of a Turing machine that he claims to be
capable of computing everything in history except the above example. In other
words, Prolog is (NOT) programmable on Turing machines. Obviously, the above
program can be written in all Prolog versions. Thus, he has to prove (experimen-
tally) that PROgramming in LOGic is impossible. A mathematical proof that a
Turing machine cannot compute the above program is irrelevant to the physical
phenomenon of computation. It would be certainly interesting for everybody to
see this machine in public. Of course, not only for the scientific community, but
for the whole world.

Then something must be wrong somewhere. If the Turing machine definition as a
tuple in [22] < Σ, Γ, Q, δ >, then the counter-argument that it is impossible for a
Turing machine to diagonalize against itself definitely assumes that the transition
δ function may not be a logical one. The Turing SySBPD machine introduced
below emphasizes computable logical functions by assigning logical properties to
δ, i.e. < Σ, Γ, Q, p(δ, µ) >. It is easy to see that if a Turing machine cannot
risk contradiction (as claimed above), then the Turing SySBPD may. However,
both machines are equivalent with Turing SySBPD emphasis of possible logical
contradiction.

6. Another Proof:

This proof is entirely independent of Turing machines. It is easy to see the
possibility of such an approach since the SAT problem (as well as FLP) are
logical problems that exist independent of complexity theory. First, the SAT
and FLP decision problems are defined, then followed by the proof.

14

Definition 6.1: The SAT Decision Problem.
Let F be a SAT formula, the SAT computation on F assigns a function h to
F : h(F) ∈ {0, 1}, thus h is a pair. Either h = (F, 0) or h = (F, 1). In other
words, input string are coded either “Yes” or “No”.

Definition 6.2: The FLP Decision Problem.
Let G be an FLP formula, the FLP computation on G assigns a relation r to
G : r(G) is a triple r(G) = (G, x, y), x ∈ [0, 1], y ∈ {0, 1} both x, y are non-empty,
x = y only when x, y ∈ {0, 1}, otherwise x 6= y; where:

1. x: syntactic FLP truth value.

2. y: semantic FLP truth value.

In this case, input strings are coded both “Yes” and “No”.

Theorem 6.1: SAT is (NOT) NP-complete.

Proof:

1. SAT is NP-complete.

2. =⇒ ∀L written in FLP, L ∈ P, SAT is NP-complete =⇒ L ≤p SAT.

3. L ≤p SAT =⇒ r is not a relation, but a function, i.e. when the triple must
become a pair.

4. r is a relation =⇒ L 6≤p SAT, contra-positive of 3.

5. r is a relation, by Definition 6.2.

6. =⇒ SAT s (NOT) NP-complete.

It is easy to see that infnite-valued FLP is not necessary for the above result
and it can be arrived at via only 3-valued FLP as well as 2-valued FLP , i.e. the
system LIAR. The following section presents example programs to demonstrate
the invalidity of the counter-argument of the impossibility to write such type of
programs.

7. The SySBPD Class of Counter-Examples

The language L above constitutes a counter-example for the NP-completeness
property. In fact, there is not only one such language but an infinite class of
languages, recalling examples in [90] in the context of this paper:

Example 7.1 [90]:

15

Mature-Student(x,µ) ← Student(x),Age-About-21(x,µ)
Age-About-21(John,0.9)←
Age-About-21(Peter,0.4)←
Student(John)←
Student(Peter)←

Here, we have three predicate symbols, namely, Student, Mature-Student and
Age-About-21. The n-ary predicate symbol becomes an n-ary+1 if the predicate
is a fuzzy one. This is to allow for the µ indicating the membership value.
Obviously, Mature-Student and Age-About-21 are fuzzy predicates. Now, we
consider the goal←Mature-Student(John,µ). This will unify the head of the first
rule with unification (x = John, µ = µ). Thus, resulting into two subgoals, the
first Student(John) which succeeds. The other subgoal is Age-About-21(John,µ)
which succeeds with the value µ = 0.9 for John. It is obvious that the predicate
Mature-Student leads to the same SySBPD paradox as the Age-About-21 did
above.

Example 7.2 [90]:
Potential-Customer(x,µ1)← Customer(x),µ1 ≥ 0.7
Top-Potential-Customer(x,µ2)← Customer(x),µ2 ≥ 0.9
Good-Credit-Customer(x,µ3)← Balance-level(x,y,µ3), µ3 ≥ 0.7
Customer(John) ←
Balance-Level(John,400,0.7)←
Customer(Richard)←
Balance-Level(Richard,500,0.8)←
Consider the goal ← Good-Credit-Customer(Richard,µ)

It is obvious that the predicate Good-Credit-Customer leads to the same SySBPD
paradox as the Age-About-21 did above.

Example 7.3 [90]:
R1: p(x, y, µp1

)← q(x, µq1
), r(y, µr)

R2: p(x, y, µp2
)← q(x, µq2

), s(y, µs)
R3: q(m, 0.3)←
R4: r(x, µr)← t(x, µt)
R5: s(n, 1)←
R6: t(n, 0.4)←

Consider the fuzzy goal ← p(m, n, 0.3) which unifies with the first fuzzy rule
giving the two fuzzy sub-goals, where the success of each leads to the SySBPD
paradox:

1. ← q(m, µq1
), µq1

≥ 0.3,

16

2. ← r(n, µr), µr ≥ 0.3.

The fuzzy subgoal (1) unifies with R3 and succeeds while the second fuzzy subgoal
unifies with R4 and results with another two fuzzy subgoals with the second being
µr ≥ 0.3 resulting in the goal ← (t, 0.3) which succeeds when unifying with R6.
As a result, the original goal← p(m, n, 0.3) succeeds as far as matching with rule
R1 is considered. When matching with rule R2, two fuzzy subgoals are generated,
they are (where the success of each - again - leads to the SySBPD paradox -
and this situation recurs):

1. ← q(m, µq2
), µq2

≥ 0.3,

2. ← s(n, µs), µs ≥ 0.3.

The first successfully matches with R3 and the second as well with R5. So, the
original fuzzy goal succeeds in this case.
Now consider the fuzzy goal ← p(m, n, 0.2) when matching with R1, two fuzzy
subgoals are generated, namely:

1. ← q(m, µq1
), µq1

≥ 0.2,

2. ← r(n, µr), µr ≥ 0.2.

The first fuzzy subgoal of (1)← q(m, µq1
) unifies with R3 giving µq = 0.3 and as

a result the second fuzzy subgoal µq ≥ 0.2 succeeds. For the second fuzzy subgoal
← r(n, µr), µr ≥ 0.2, we have only rule R4 which unifies successfully resulting
in the goal ← (t, 0.2) which succeeds when unifying with R6. As a result, the
original fuzzy goal ← p(m, n, 0.2) succeeds. When matching with R2, two fuzzy
subgoals are generated, namely:

1. ← q(m, µq), µq ≥ 0.2,

2. ← s(n, µs), µs ≥ 0.2.

The first subgoal matches with R3 and succeeds. The second fuzzy subgoal
matches with R5 and succeeds. Now consider a fuzzy goal with a variable µ, i.e.
← p(m, n, µ), matching with R1, we get:

1. ← q(m, µq), µq ≥ µ,

2. ← r(n, µr), µr ≥ µ.

The first matches with R3 and µq = 0.3, thus solving µ ≤ 0.3. The second will
unify with rule R4 then rule R6 returning µ ≤ 0.4. The original goal succeeds
with (µ ≤ 0.3) ∧ (µ ≤ 0.4). Thus µ ≤ 0.3. When matching with rule R2, two
fuzzy subgoals are generated:

17

1. ← q(m, µq), µq ≥ µ,

2. ← s(n, µs), µs ≥ µ.

The first matches with R3 giving µ ≤ 0.3. The second matches with R5 giving
µ ≤ 1. The original goal succeeds with [(µ ≤ 0.3) ∧ (µ ≤ 1)] ∨ [(µ ≤ 0.3) ∧ (µ ≤
0.4)]. Thus, µ ≤ 0.3. Thus, the SySBPD paradox is generated and re-generated
in this simple program.

8. SySBPD Implemented:
8.1 An FLP Meta-Interpreter: Sun-Unix (IC-Prolog)

In this section, a meta-interpreter is presented to the SySBPD class. The meta-
interpreter is implemented in IC-Prolog. Given the rule:

< p1(x), µp1
>←< q(x), µq1

> .

It can be read declaratively or procedurally:

1. The declarative reading states that: for a certain value of the variable x, p1

should be true to a level µp1
≥ µq1

.

2. The procedural reading states that: for a fuzzy goal ←< p1(m), 0.3 > to
succeed, the fuzzy subgoal ←< q(m), 0.3 > must succeed. Further, for the
fuzzy goal ←< p(m), 0.4 >, the fuzzy sub-goal q(m, 0.4) must succeed.

So, as far as execution is concerned, both values of µ are instantiated in the fuzzy
rule with the same constant level in the goal and then attempt succeeding the
fuzzy sub-goal. Then, using the meta-interpreter, the rule is rewritten as follows:

R1 : < p1(x), µp1
>←< q1(x), µq1

>
as
R1′ : p1(X, Mp1) : −q(X, Mp1).

Now, consider the fuzzy goal ←< p1(m), V >, where V is a variable. Now,
the system is queried to what maximum level this fuzzy goal can be satis-
fied. This is done via the meta-interpreter predicate solve(A) which becomes
← solve(p1(m, V)). The system predicates functor and arg are used.
When rewriting the fuzzy logic programs in IC-Prolog or standard Prolog, care
should be taken as the semantics associated with fuzzy logic programs are differ-
ent than that of standard Prolog. For instance, given the fact < q(m), 0.3 >←,
in fuzzy logic programming, it is considered as a fuzzy fact. q is said to be true
to a level µ where 0 < µ ≤ 0.3. In standard Prolog, the goal← q(m, 0.25) would
return the answer “No”. So, to write a fuzzy fact in Prolog, it should be written
as:

q(m, Mq) : −(Mq ≤ 0.3), (Mq > 0)

18

During execution within the Prolog model, the answers conform to the given
semantics. Now, the extended rules are extended with a factor f ∈ [0, 1] doubting
the rule:

< p1(x), µp1
>← (0.9)− < q(x), µq > .

For the goal←< p1(x), 0.3 > to succeed, the fuzzy goal← q(x, µq) must succeed
at least with the value 0.3/0.9. To do this in standard Prolog, the fuzzy fact and
the fuzzy rule are rewritten as follows:

p1(X, Mp1) : −q(X, Mp1).

q(m, Mq) : −(Mq ≤ 0.3/0.9), (Mq > 0).

which will lead to the intended meaning.
Now, if the predicate q happens to be in the body of two fuzzy rules with different
f factors, a different rewriting of the facts is required. For instance, one obtains
the following two rules and two facts:

R1 : < p1(x), µp1
>← (0.9)− < q(x), µq >

R2 : < p2(x, y), µp2
>← (0.7)− < q(x), µq >, < s(Y), µs > .

Fact1 : < q(m), 0.3 >←
Fact2 :< s(n), 0.4 >←

If this fuzzy logic program is rewritten in Prolog, one gets:
R1′ : p1(X, Mp1) : −q(X, Mp1).
R2′ : p2(X, Y, Mp2) : −q(X, Mp2), s(Y, Mp2).
and the two fuzzy facts:
Fact1′ : q(m, Mq) : −(Mq ≤ 0.3/0.9), (Mq > 0)
Fact2′ : s(n, Ms) : −(Ms ≤ 0.4/0.7), (Ms > 0).

If a fuzzy goal matches with R1′, then Fact1′, this would be fine. But if a
fuzzy goal matches with R2′, the q fuzzy subgoal must have f = 0.7 not 0.9.
Thus, given the same predicate occurring in the body of two fuzzy rules with
different f factors, it should be renamed when rewriting. As a result, the predicate
q is renamed in R2 to h, and one obtains two fuzzy facts Fact1′ and Fact2′′

corresponding to Fact 1 in the original program:
R1′ : p1(X, Mp1) : −q(X, Mp1).
R2′ : p2(X, Y, Mp2) : −h(X, Mp2), s(Y, Mp2).
Fact1′ : q(m, Mq) : −(Mq ≤ 0.3/0.9), (Mq > 0).
Fact1′′ : h(m, Mh) : −(Mh ≤ 0.3/0.7), (Mh > 0).
Fact2′ : s(n, Ms) : −(Ms ≤ 0.4/0.7), (Ms > 0).

In the following, a code listing for the meta-interpreter is presented and a rewrit-
ten fuzzy logic program in IC-Prolog that was tested with the results expected
from the semantics for fuzzy logic programming. The [0, 1] interval has been
assumed as [0,100], i.e. one hundred increments.

p1(X,Mp1):- q(X,Mp1).
p2(X,Y,Mp2):-q(X,Mp2),s(Y,Mp2).

19

p3(X,Y,Z,Mp3):- s(Y,Mp3),t(Z,Mp3),q(X,Mp3).
q(m,Mp2):-(Mp2=<4/9),(Mp2>0).
s(n,Mpr):-(Mpr=<3/7),(Mpr>0).
t(l,Mpr):-(Mpr=<1/2),(Mpr>0).
solve(A,0).
solve(A,X) :- X > 0, functor(A,F,N),F=A,arg(N,A,H),var(H),arg(N,A,X),A,!.
solve(A,X) :- X > 0, Z is X - 1, solve(A,Z).
solve(A) :- solve(A,100).
nt(A):-solve(A),functor(A,F,N),arg(N,A,H),Y is 100-H,write(Y).

The solve predicate finds the threshold if the goal contained variables. For a
negated goal not containing variables the built-in not predicate would produce
the right answer. If the negated goal contained variables, the nt predicate above
gives the threshold.

8.2 Meta-Interpreter: PC:Win-Prolog

The following are three clauses which form the program in question. The meta-
interpreter will run in conjunction with this program. This program can be
changed and edited each run while the meta-interpreter is re-usable across differ-
ent programs.

p1(X,Mp1):- q(X,Mp1).
p2(X,Y,Mp2):-q(X,Mp2),s(Y,Mp2).
p3(X,Y,Z,Mp3):- s(Y,Mp3),t(Z,Mp3),q(X,Mp3).

The following are clauses to establish the allowable ranges for truth values in a
Prolog syntax.

q(m,Mp2):-(Mp2=<4/9),(Mp2>0).
s(n,Mpr):-(Mpr=<3/7),(Mpr>0).
t(l,Mpr):-(Mpr=<1/2),(Mpr>0).

Here starts the meta-interpreter: three different predicates:
solve(A) uniary predicate, solve(A,X) binary predicate and nt(A)

Base predicate to pass the value of zero level without attempting recursive calls
solve(A,0).

Base predicate to pass values greater than zero
solve(A,X) :- X > 0, functor(A,F,N),F=A,arg(N,A,H),var(H),arg(N,A,X),A,!.

Recursive calls to determine the exact levels
solve(A,X) :- X > 0, Z is X - 1, solve(A,Z).

Initial run of the goal unifies with this clause head
solve(A) :- solve(A,100).

To produce results for a negated goal:
nt(A):-solve(A),functor(A,F,N),arg(N,A,H),Y is 100-H,write(Y).

9. On the avoidability of the Complexity Class:“SySBPD”:

20

Overall, the SySBPD languages would constitute a reduction obstruction. Obvi-
ously, reduction is of central importance in computability and complexity the-
ories. This new complexity class SySBPD would overlap virtually every com-
plexity class. Its effect is not confined to obstructing reduction only. It would
propagate to many results of descriptive complexity. Fagin’s theorem [36] as
well as the Immermann-Vardi theorem [89,110] are examined after the discovery
of this class. However, the second FLP paradox (appearing when considering
the cardinality of the valid formulas of the underlying paradoxical system) has
far-reaching implications in mathematics outside complexity theory. It turns out
that this paradox *proves* the existence of a transfinite cardinal, hence the “Con-
tinuum Hypothesis” & the “Axiom of Choice” are false and ZFC is inconsistent
[92]. Clearly, this inconsistency result affects all of mathematics and mathemat-
ical disciplines: physics, computer science, etc, apart from inconsistency results
due to NP-completeness and descriptive complexity.

In fuzzy logic applications, clearly the paradoxical feature of FLP is undesirable.
Perhaps that system was never adopted, unless from a practical point-of-view.
Theoretically, it is certainly paradoxical. Practically, the meta-interpreter pre-
sented above could be used in “fuzzy expert systems” without any problems.
Moreover, fuzzy logic programming can compute even more computable func-
tions. However, its theoretical paradox is avoidable, see [91] and other FLP
systems in the references below. Nevertheless, this paradoxical class of languages
is (unavoidable) in complexity theory. The reason is that complexity theory is a
theory that studies the computational complexity of classes of infinite number of
languages. So, even if FLP is ignored, it does not mean that it does not exist.
Moreover, it has been demonstrated that the 2-valued FLP paradox is precisely
the liar’s paradox which is inevitable in natural languages. Perhaps more inter-
estingly, the paradoxical FLP relation occurs in nature. It reconceptualizes the
relation between space and time making a quantum theory of gravity possible,
the long outstanding question of theoretical physics [93]. As such, a substantial
class of paradoxical languages does exist within the robust class P. One has the
four new computational complexity classes:

1. PSys = {L : L ∈ P ∩ SySBPD}

2. PNonSys = {L : L ∈ P, L 6∈ SySBPD}

3. NPSys = {L : L ∈ NP ∩ SySBPD}

4. NPNonSys = {L : L ∈ NP, L 6∈ SySBPD}

Related to the conventional P and NP as follows:

1. P = PSys ∪ PNonSys, PSys ∩ PNonSys = ∅

21

2. NP = NPSys ∪NPNonSys, NPSys ∩NPNonSys = ∅

The NP-completeness property for SAT could be revised in the light of the discov-
ery of the new class as the language which is complete to the new computational
complexity class NPNonSys:

Empirical Observation: SAT is NPNonSys-complete.

∀L ∈ NPNonSys L ≤p SAT =⇒ SAT is NPNonSys-complete.

Other complete languages for other classes should be appropriately modified to
exclude any language in the SySBPD class, as it cannot be reduced to such a
complete language. For instance HP is (NOT) c.e.-complete with similar con-
siderations. Answering any of the following questions, answers the P =? NP
question:

1. PSys =? NPSys.

2. PNonSys =? NPNonSys; the old question.

Observation: SAT ∈ PNonSys =⇒ PNonSys = NPNonSys.

10. Descriptive Complexity:

Fundamental results of descriptive complexity must be examined against the
SySBPD computational paradoxes. Similar arguments as to NP-completeness
can be demonstrated as below.

10.1 Fagin’s theorem [36]: NP = SO∃.

Theorem 10.1: NP 6= SO∃.

Proof: Let L be a one step paradoxical FLP computation as above.

1. L ∈ P.

2. L ∈ NP.

3. L 6∈ SO∃, L ∈ SO∃ ⇐⇒6 ∃ p(t1, t2, . . . , tn, µ) ∈ L.

4. NP 6= SO∃

Observation: NPNonSys = SO∃ − FLP

By the notation SO∃ − FLP, it is meant that atoms of the form p(t1, t2, . . . , tn, µ),

22

µ ∈ [0, 1] are forbidden, i.e. only purely classical atoms. This observation is a
restatement of the old result excluding paradoxical SySBPD languages. NPSys

=? SO∃ remains an open question.

Immermann-Vardi theorem [89,110]: P = FO+LFP.

Theorem 10.2: P 6= FO+LFP.

Proof: Let L be a one step paradoxical FLP computation as above.

1. L ∈ P.

2. L 6∈ FO+LFP, L ∈ FO+LFP ⇐⇒6 ∃ p(t1, t2, . . . , tn, µ) ∈ L.

3. P 6= FO+LFP

Observation: PNonSys = [FO - FLP]+LFP. The question PSys =? FO+LFP
remains open. Similar arguments hold for other descriptive complexity results
over the computational complexity hierarchy.

Theorem 10.3: ZFC is inconsistent.

Proof:
[Cook’s Theorem [21]

∧
Theorems 1.1, 4.2, 6.1]

∨

[Fagin’s Theorem
∧

Theorem 10.1]
∨

[Immermann-Vardi Theorem
∧

Theorem 10.2]

=⇒
ZFC is inconsistent

SySBPD Implications
The P versus NP Problem

The problem certainly survives the SySBPD class of counter-examples to the
NP-completeness property. However, a polynomial-time algorithm for SAT no
longer implies P = NP. Nor the non-existence of such an algorithm would imply
P 6= NP . In its basic informal definition:“Whether easy recognition of a solution
implies easy finding one”, the problems survives as it always had been. However,
the precise definition of the class P is divided into two (disjoint) classes PSySBPD

and PNonSySBPD, written simply as PSyS and PNonSyS:

23

P = {L|L = L(M) for some Turing machine M which runs in polynomial time}

P = PSyS ∪ PNonSyS

PSyS = {L|L = L[M] for some Turing machine M which runs in polynomial
time}, where L[M] denotes M accepts L iff M rejects it.

PNonSyS = {L|L = L(M) for some Turing machine M which runs in polynomial
time}, where L(M) denotes M accepts L and strictly does not reject it.

The SySBPD could have members across the entire arithmetic hierarchy. Since
the fuzzy logic programs [90] are classical, they have the complete Turing hierar-
chy computational capability. The usual hierarchy nicely presented in [87] MUST
be augmented with the class SySBPD, resulting in lots of class separation ques-
tions. It is obvious that the counter-example to the NP-completeness property
is also a counter-example to c.e.-completeness. The same proof above showing
SAT not to be NP-complete can be used to prove that HP is NOT c.e.-complete.
However, it is undecidable. The new complexity hierarchy - incorporating the
SySBPD class describes computable languages on the Turing SySBPD ma-
chine. While the Turing machine had only two halting states: qaccept and qreject,
the Turing SySBPD machine is a Turing machine that has the following halting
states:

1. qaccept: M halts in qaccept and only qaccept, i.e. no paradoxical halting.

2. qreject: M halts in qreject and only qreject, i.e. no paradoxical halting.

3. qSySBPD. M halts in the state qSySBPD when it halts in qaccept iff it halts in
qreject, i.e. M halts paradoxically.

The above (reviewed) definition of the class P is on the Turing SySBPD ma-
chine. The question P =? NP has the following possibilities:

1. P = NP.

2. P 6= NP.

3. P = NP ∧ P 6= NP.

4. Formally Independent.

5. Both Independent and Dependent.

24

However, the empirical non-existence of polynomial-time algorithms for the used
to be NP-complete problems would still associate the property with intractability.
Nevertheless, the existence or non-existence of such algorithms would not resolve
the P vs. NP problem.

References:

1. T. Alsinet, L. Godo:“Adding similarity-based reasoning capabilities to a
Horn fragment of possibilistic logic with fuzzy constants”. Fuzzy Sets and
Systems 144(1): 43-65 (2004) 2003.

2. T. Alsinet, C. Ansótegui, R. Bjar, C. Fernández, F. Many:“Automated
monitoring of medical protocols: a secure and distributed architecture”.
Artificial Intelligence in Medicine 27(3): 367-392 (2003).

3. T. Alsinet, R. Bjar, A. Cabiscol, C. Fernández, F. Many:“Minimal and
Redundant SAT Encodings for the All-Interval-Series Problem. CCIA 2002:
139-144.

4. T. Alsinet, L. Godo, S. Sandri:“Two formalisms of extended possibilistic
logic programming with context-dependent fuzzy unification: a comparative
description”. Electr. Notes Theor. Comput. Sci. 66(5): (2002).

5. T. Alsinet, L. Godo:“Towards an automated deduction system for first-
order possibilistic logic programming with fuzzy constants”. Int. J. Intell.
Syst. 17(9): 887-924 (2002) 2001.

6. T. Alsinet, L. Godo: “A Proof Procedure for Possibilistic Logic Program-
ming with Fuzzy Constants”. ECSQARU 2001: 760-771 2000.

7. T. Alsinet, R. Bjar, C. Fernandez, F. Many:“A Multi-agent system archi-
tecture for monitoring medical protocols”. Agents 2000: 499-505.

8. T. Alsinet, L. Godo:“A Complete Calcultis for Possibilistic Logic Program-
ming with Fuzzy Propositional Variables”. UAI 2000: 1-10 1999.

9. T. Alsinet, L. Godo, S. Sandri:“On the Semantics and Automated Deduc-
tion for PLFC, a Logic of Possibilistic Uncertainty and Fuzziness”. UAI
1999: 3-12.

10. T. Alsinet, F. Many, J. Planes:“Improved Exact Solvers for Weighted Max-
SAT”. SAT 2005: 371-377 2004.

11. T. Alsinet, F. Many, J. Planes:“A Max-SAT Solver with Lazy Data Struc-
tures”. IBERAMIA 2004: 334-342.

25

12. T. Alsinet, C. I. Chesnevar, L. Godo, G. R. Simari: “A logic program-
ming framework for possibilistic argumentation: Formalization and logical
properties”. Fuzzy Sets and Systems 159(10): 1208-1228 (2008)

13. T. Alsinet, C. I. Chesnevar, L. Godo, G. R. Simari: “A logic program-
ming framework for possibilistic argumentation: Formalization and logical
properties”, Fuzzy Sets and Systems 159(10): 1208-1228 (2008).

14. T. Alsinet, L. Godo:“Adding similarity-based reasoning capabilities to a
Horn fragment of possibilistic logic with fuzzy constants”. Fuzzy Sets and
Systems 144(1): 43-65 (2004)

15. T. Alsinet, L. Godo, S. Sandri: Two formalisms of extended possibilistic
logic programming with context-dependent fuzzy unification: a comparative
description. Electr. Notes Theor. Comput. Sci. 66(5): (2002)

16. T. Alsinet, L. Godo: Towards an automated deduction system for first-
order possibilistic logic programming with fuzzy constants. Int. J. Intell.
Syst. 17(9): 887-924 (2002)

17. T. Alsinet, L. Godo: A Proof Procedure for Possibilistic Logic Programming
with Fuzzy Constants. ECSQARU 2001: 760-771

18. T. Alsinet, L. Godo: A Complete Calcultis for Possibilistic Logic Program-
ming with Fuzzy Propositional Variables. UAI 2000: 1-10

19. F. Bobillo and U. Straccia:“On Qualified Cardinality Restrictions in Fuzzy
Description Logics under Lukasiewicz semantics”. In Proceedings of the
12th International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems, (IPMU-08), 2008.

20. F. Bobillo and U. Straccia:“fuzzyDL:An Expressive Fuzzy Description Logic
Reasoner”. In Proceedings of the 2008 International Conference on Fuzzy
Systems (FUZZ-08).

21. S. Cook: “The complexity of theorem proving procedures”, Proceedings of
the Third Annual ACM Symposium on Theory of Computing, 151158, pdf
version available at the blog of Prof Richard Lipton: http://rjlipton.wordpress.com/
cooks-paper.

22. S. Cook: “P versus NP, Official Problem Description”, www.claymath.org,
2004.

23. F. Esteva, L. Godo:“Putting together Lukasiewicz and product logic”, Math-
ware and Soft Computing 6:219:234, 1999.

26

24. F. Esteva, L. Godo, P. Hajek and M. Navara:“Residuated Fuzzy Logics
with an Involutive Negation”, Archive for Math. Log., 39: 103-124.

25. F. Esteva, L. Godo:“Monoidal t-norm Based Logic”, Fuzzy Sets and Sys-
tems, 124:271-288, 2001.

26. F. Esteva, L. Godo, P. Hájek, F. Montagna:“Hoops and Fuzzy Logic”. J.
Log. Comput. 13(4): 532-555 (2003)

27. F. Esteva, L. Godo and C. Noguera:“On Rational Weak Nilpotent Minimum
Logics”, J. Multiple-Valued Logic and Soft Computing, 2006.

28. F. Esteva, J. Gispert, L. Godo, C. Noguera:“Adding Truth-Constants to
Logics of Continuous t-norms: Axiomatization and Completeness Results”,
Fuzzy Sets and Systems, 158:597-618, 2007.

29. F. Esteva, L. Godo: Towards the Generalization of Mundici’s Gamma Func-
tor to IMTL Algebras: The Linearly Ordered Case. Algebraic and Proof-
theoretic Aspects of Non-classical Logics 2006: 127-137

30. F. Esteva, L. Godo, F. Montagna: Equational Characterization of the Sub-
varieties of BL Generated by t-norm Algebras. Studia Logica 76(2): 161-200
(2004)

31. F. Esteva, L. Godo, F. Montagna: Axiomatization of Any Residuated Fuzzy
Logic Defined by a Continuous t-norm. IFSA 2003: 172-179

32. F. Esteva, L. Godo, P. Hájek, F. Montagna: Hoops and Fuzzy Logic. J.
Log. Comput. 13(4): 532-555 (2003)

33. F. Esteva, J. Gispert, L. Godo, F. Montagna: On the Standard and Rational
Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic.
Studia Logica 71(2): 199-226 (2002)

34. F. Esteva, L. Godo: On Complete Residuated Many-Valued Logics with
T-Norm Conjunction. ISMVL 2001: 81-

35. F. Esteva, L. Godo: Monoidal t-norm based logic: towards a logic for left-
continuous t-norms. Fuzzy Sets and Systems 124(3): 271-288 (2001)

36. R. Fagin. Generalized First-Order Spectra and Polynomial-Time Recogniz-
able Sets. Complexity of Computation, ed. R. Karp, SIAM-AMS Proceed-
ings 7, pp. 27-41. 1974.

37. L. Fortnow: Computational Complexity blog,

http://oldblog.computationalcomplexity.org/archive/2003-01-19-archive.html.

27

38. L. Godo, P.etr Hájek:“Fuzzy inference as deduction”. Journal of Applied
Non-Classical Logics 9(1), 1999.

39. L. Godo, P. Hájek, F. Esteva: A Fuzzy Modal Logic for Belief Functions.
IJCAI 2001: 723-732

40. L. Godo, P. Hájek, F. Esteva: A Fuzzy Modal Logic for Belief Functions.
Fundam. Inform. 57(2-4): 127-146, 2003.

41. L. Godo, S. Sandri: Special Issue on the Eighth European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-
SQARU 2005). Int. J. Approx. Reasoning 45(2): 189-190 (2007)

42. L. Godo, E. Marchioni: Coherent Conditional Probability in a Fuzzy Logic
Setting. Logic Journal of the IGPL 14(3): 457-481 (2006)

43. L. Godo: Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty, 8th European Conference, ECSQARU 2005, Barcelona, Spain, July
6-8, 2005, Proceedings Springer 2005

44. L. Godo, J. Puyol-Gruart, J. Sabater, V. Torra, P. Barrufet, X. Fbregas: A
multi-agent system approach for monitoring the prescription of restricted
use antibiotics. Artificial Intelligence in Medicine 27(3): 259-282 (2003)

45. L. Godo, P. Hájek, F. Esteva: A Fuzzy Modal Logic for Belief Functions.
Fundam. Inform. 57(2-4): 127-146 (2003)

46. L. Godo, R. O. Rodriguez: Graded Similarity-Based Semantics for Non-
monotonic Inferences. Ann. Math. Artif. Intell. 34(1-3): 89-105 (2002)

47. L. Godo, P. Hájek, F. Esteva: A Fuzzy Modal Logic for Belief Functions.
IJCAI 2001: 723-732

48. L. Godo, A. Zapico: On the Possibilistic-Based Decision Model: Character-
ization of Preference Relations Under Partial Inconsistency. Appl. Intell.
14(3): 319-333 (2001)

49. L. Godo, R. L. de Mántaras, J. Puyol-Gruart, C. Sierra: Renoir, Pneumon-
IA and Terap-IA: three medical applications based on fuzzy logic. Artificial
Intelligence in Medicine 21(1-3): 153-162 (2001)

50. L. Godo, V. Torra: Extending Choquet Integrals for Aggregation of Ordinal
Values. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 9(Supplement): 17-31 (2001)

51. P. Hájek:“Metamathematics of Fuzzy Logic”, Trends in Logic, Kluwer Aca-
demic Publishers, Dordrecht, Vol. 4, 308 pp., 1998.

28

52. P. Hájek: On arithmetical complexity of fragments of prominent fuzzy pred-
icate logics. Soft Comput. 12(4): 335-340 (2008)

53. P. Hájek: Complexity of fuzzy probability logics II. Fuzzy Sets and Systems
158(23): 2605-2611 (2007)

54. P. Hájek: On witnessed models in fuzzy logic. Math. Log. Q. 53(1): 66-77
(2007)

55. P. Hájek: On witnessed models in fuzzy logic II. Math. Log. Q. 53(6):
610-615 (2007) 2006

56. P. Hájek: On Fuzzy Theories with Crisp Sentences. Algebraic and Proof-
theoretic Aspects of Non-classical Logics 2006: 194-200

57. P. Hájek: What is mathematical fuzzy logic. Fuzzy Sets and Systems
157(5): 597-603 (2006)

58. P. Hájek: Computational complexity of t-norm based propositional fuzzy
logics with rational truth constants. Fuzzy Sets and Systems 157(5): 677-
682 (2006)

59. P. Hájek: Mathematical Fuzzy Logic - What It Can Learn from Mostowski
and Rasiowa. Studia Logica 84(1): 51-62 (2006).

60. P. Hájek: Logics for Data Mining. The Data Mining and Knowledge Dis-
covery Handbook 2005: 589-602

61. P. Hájek: On arithmetic in the Cantor-Lukasiewicz fuzzy set theory. Arch.
Math. Log. 44(6): 763-782 (2005)

62. P. Hájek: Making fuzzy description logic more general. Fuzzy Sets and
Systems 154(1): 1-15 (2005)

63. P. Hájek: A non-arithmetical Godel logic. Logic Journal of the IGPL 13(4):
435-441 (2005)

64. P. Hájek: Arithmetical complexity of fuzzy predicate logics - a survey. Soft
Comput. 9(12): 935-941 (2005)

65. P. Hájek, Jan Rauch, David Coufal, Thomas Feglar: The GUHA Method,
Data Preprocessing and Mining. Database Support for Data Mining Ap-
plications 2004: 135-153

66. P. Hájek: A True Unprovable Formula of Fuzzy Predicate Logic. Logic
versus Approximation 2004: 1-5

29

67. P. Hájek: On generalized quantifiers, finite sets and data mining. IIS 2003:
489-496

68. P. Hájek: Relations and GUHA-Style Data Mining II. RelMiCS 2003: 163-
170

69. P. Hájek, Martin Holena, Jan Rauch: The GUHA Method and Founda-
tions of (Relational) Data Mining. Theory and Applications of Relational
Structures as Knowledge Instruments 2003: 17-37

70. P. Hájek: Fuzzy Logics with Noncommutative Conjuctions. J. Log. Com-
put. 13(4): 469-479 (2003)

71. P. Hájek: Basic fuzzy logic and BL-algebras II. Soft Comput. 7(3): 179-183
(2003)

72. P. Hájek: Observations on non-commutative fuzzy logic. Soft Comput.
8(1): 38-43 (2003)

73. P. Hájek, Martin Holena: Formal logics of discovery and hypothesis forma-
tion by machine. Theor. Comput. Sci. 292(2): 345-357 (2003) 2002

74. P. Hájek: Observations on the monoidal t-norm logic. Fuzzy Sets and
Systems 132(1): 107-112 (2002)

75. P. Hájek: A New Small Emendation of Godel’s Ontological Proof. Studia
Logica 71(2): 149-164 (2002)

76. P. Hájek: Monadic Fuzzy Predicate Logics. Studia Logica 71(2): 165-175
(2002) 2001

77. P. Hájek, Z. Hanikova: A Set Theory within Fuzzy Logic. ISMVL 2001:
319-323

78. P. Hájek: Relations in GUHA Style Data Mining. RelMiCS 2001: 81-87

79. P. Hájek, John C. Shepherdson: A note on the notion of truth in fuzzy
logic. Ann. Pure Appl. Logic 109(1-2): 65-69 (2001)

80. P. Hájek, Sauro Tulipani: Complexity of Fuzzy Probability Logics. Fun-
dam. Inform. 45(3): 207-213 (2001)

81. P. Hájek, L. Godo, S. Gottwald: Editorial. Fuzzy Sets and Systems 124(3):
269-270 (2001)

82. P. Hájek: On very true. Fuzzy Sets and Systems 124(3): 329-333 (2001)

30

83. P. Hájek: Fuzzy Logic and Arithmetical Hierarchy III. Studia Logica 68(1):
129-142 (2001) 2000

84. P. Hájek, Dagmar Harmancov?: A Hedge for Gödel Fuzzy Logic. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
8(4): 495-498 (2000)

85. P. Hájek, Jeff B. Paris, John C. Shepherdson: The Liar Paradox and Fuzzy
Logic. J. Symb. Log. 65(1): 339-346 (2000)

86. P. Hájek, Jeff B. Paris, John C. Shepherdson: Rational Pavelka Predicate
Logic Is A Conservative Extension of Lukasiewicz Predicate Logic. J. Symb.
Log. 65(2): 669-682 (2000)

87. P. Hájek, Jan Rauch: Logics and Statistics for Association Rules and Be-
yond Abstract of Tutorial. PKDD 1999: 586-587

88. P. Hájek: Ten Questions and One Problem on Fuzzy Logic. Ann. Pure
Appl. Logic 96(1-3): 157-165 (1999)

89. N. Immermann, “Guest Column: Progress in Descriptive Complexity”,
SIGACT News Complexity Theory Column 49, ACM SIGACT News, Septem-
ber 2003 Vol. 34, No. 3.

90. N. Immerman, Relational queries computable in polynomial time, Informa-
tion and Control 68 (13) (1986) 86104.

91. R. E. Kamouna: “Fuzzy Logic Programming”, Fuzzy Sets and Systems,
1998.

92. R. E. Kamouna:“Fuzzy Logic Programming Based on α-Cuts”, Ph.D. the-
sis, De Montfort University, England, 2003.

93. R. E. Kamouna:“Two Fuzzy Logic Programming Paradoxes Imply Contin-
uum Hypothesis=”False” & Axiom of Choice=”False” Imply ZFC is Incon-
sistent, http://arxiv.org/PS-cache/arxiv/pdf/0807/0807.2543v4.pdf.

94. R. E. Kamouna: “A Spatio-Temporal Bi-Polar Disorder Quantum Theory
of Gravity, A Fuzzy Logic Programming Reconciliation, http://arxiv.org/PS-
cache/arxiv/pdf/0806/0806.2947v7.pdf

95. S.C. Kleene and J. B. Rosser, “The inconsistency of certain formal logics.”
Ann. of Math., 36:630-636, 1935.

96. S. Krajci, R. Lencses, P. Vojtás:“A comparison of fuzzy and annotated logic
programming”. Fuzzy Sets and Systems, 144 (2004) 173192

31

97. T. Lukasiewicz and U. Straccia:“Managing Uncertainty and Vagueness”, in
Description Logics for the Semantic Web In Journal of Web Semantics.

98. S. Krajci, R. Lencses, P. Vojtás:“A comparison of fuzzy and annotated logic
programming”. Fuzzy Sets and Systems, 144 (2004) 173192

99. J. Medina, M. Ojeda, P. Vojtás:“Multi-adjoint logic programming with con-
tinuous semantics”. In Proc. LPNMR’01. Th. Eiter et al eds. Lecture
Notes in Artificial Intelligence 2173, Springer Verlag 2001, 351-364

100. J. Medina, M. Ojeda, P. Vojtás:“A procedural semantics for multi-adjoint
logic programming. In Proc. EPIA’01, P. Brazdil and A. Jorge eds. Lecture
Notes in Artificial Intelligence 2258, Springer Verlag 2001, 290-297

101. J. Medina, M. Ojeda, P. Vojás:“A completeness theorem for multi-adjoint
logic programming”. In Proc. 10th IEEE Internat. Conf. Fuzzy Systems,
IEEE 2001, 1031-1034,

102. J. Medina, M. Ojeda-Aciego, A. Valverde, P. Vojtás:“Towards Biresiduated
Multi-adjoint Logic Programming”. R. Conejo et al Eds. Revised Selected
Papers of CAEPIA 2003. Lecture Notes in Computer Science 3040 Springer
2004, 608-617,

103. V. Novak, I. Perfilieva and J. Mockor: “Mathematical principles of fuzzy
logic”, Kluwer, Boston/Dordrecht, 1999.

104. V. Novak:“Weighted inference systems”, in J. C. Bezdek, D. Dubois and
H. Prade (eds.): Fuzzy Sets in Approximate Reasoning and Information
Systems. Handbooks of Fuzzy Sets Series, Vol. 3. Kluwer, Boston, 191-
241, 1999.

105. V. Novak and I. Perfilieva (eds.):“Discovering the World with Fuzzy Logic;
Studies in fuzziness and soft computing”, Heidelberg, New York: Physica-
Verlag, Vol. 57, 302-304, 2000.

106. V. Novák, S. Gottwald, P. Hájek: Selected papers from the International
Conference ”The Logic of Soft Computing IV” and Fourth workshop of the
ERCIM working group on soft computing. Fuzzy Sets and Systems 158(6):
595-596 (2007)

107. J. Pavelka:“On Fuzzy Logic I-III. Zeit”, Math Logik Grund. Math. 25,
45-52, 119-134, 447-464, 1979.

108. A. Ragone, U. Straccia, T. Di Noia, E. Di Sciascio and F. M. Donini:“Fuzzy
Description Logics for Bilateral Matchmaking in e-Marketplaces”. In Pro-
ceedings of the 16th Italian Symposium on Advanced Database Systems
(SEBD-08), 2008.

32

109. P. Savicky, R. Cignoli, F. Esteva, L. Godo, C. Noguera:“On Product Logic
with Truth-constants, Journal of Logic and Computation, Volume 16, Num-
ber 2, pp. 205-225(21), Oxford University, 2006.

110. U. Straccia:“Fuzzy Description Logic Programs”, in Uncertainty and Intel-
ligent Information Systems, B. Bouchon-Meunier, R.R. Yager, C. Marsala,
and M. Rifqi eds. , 2008.

111. M. Y. Vardi, The complexity of relational query languages, in: Proc. 14th
ACM Symp. on Theory of Computing, 1982, pp. 137146.

112. P. Vojtás:“Fuzzy logic programming”. Fuzzy Sets and Systems. 124,3
(2001) 361-370

113. P. Vojtás, T. Alsinet, Ll. Godo:“Different models of fuzzy logic program-
ming with fuzzy unification (towards a revision of fuzzy databases)”. In
Proc. IFSA’01 Vancouver, IEEE, 2001, 1541-1546,

114. P. Vojtás:“Tunable fuzzy logic programming for abduction under uncer-
tainty”. In Proc. Workshop Many Valued Logic for Computer Science
Applications. European Conference on Artificial Intelligence 98, University
of Brighton, 1998, 7 pages

115. P. Vojtás. L. Paulak:“Soundness and completeness of non-classical ex-
tended SLD-resolution”, in Proc. ELP’96 Extended logic programming,
Leipzig, ed. R. Dyckhoff et al., Lecture Notes in Comp. Sci. 1050 Springer
Verlag, 1996, 289-301.

116. P. Vojtás, M. Vomlelová:“Transformation of deductive and inductive tasks
between models of logic programming with imperfect information”, In Proc.
IPMU 2004, B. Bouchon-Meunier et al. eds. Editrice Universita La Sapienza,
Roma, 2004, 839-846

33

A Spatio-Temporal Bi-Polar Disorder
Quantum Theory of Gravity

A Fuzzy Logic Programming Reconciliation
SySBPD ⇐⇒ SpTBPD

Rafee Ebrahim Kamouna

What is Gravity?

Imeptuous Fire,

Space-Temporal!

Ice and Desire,

The Universe wags on...

[Einstein à la “Romeo & Juliet”]

What is a Turing machine?

Imeptuous Fire,

Syntactico-Semantical!

Ice and Desire,

Fuzzy Logic Programming goes on...

[Einstein meets Turing]

Abstract
A theory of quantum gravity founded on fuzzy logic programming FLP [1] is
presented. The connection between space and time of general relativity is re-
examined from a logical point-of-view. A one-to-one correspondence between
the space/time dichotomy and syntax/semantics of logic was discovered. The
Syntactico-Semantical Bi-Polar Disorder nature of FLP (SySBPD) naturally
expresses the space/time relationship as well as unifying it with quantum me-
chanics particle/anti-particle dichotomy. The Spatio-Temporal Bi-Polar Disor-
der (SpTBPD) theory makes new predictions that can be tested by experiment,
formulates new hypotheses as well as shedding light on previously unexplained
observed phenomena, e.g. “CP violation” and the 720 degrees instead of 360 for
an electron to return to its state.

Introduction:

Einstein’s general relativity is the most accepted theory of gravity confirmed by
experiments and observations. It is mathematically expressed as tensor equations
whose solution is Lorentzian manifolds of curved spacetime (Riemannian/Pseudo-
Riemannian space). Dirac’s equation is the experimentally-verified relativistic

34

quantum mechanics theory that successfully unified quantum mechanics and spe-
cial relativity (flat spacetime - Minkowski space) whose solution is a wave func-
tion. Establishing a theory of quantum gravity remains (undoubtedly) as the
theoretical physics outstanding problem for decades [3]. The standard model of
particle physics unified all nature fundamental forces except gravity. Having a
unified theory of all fundamental forces of nature is obviously a goal longtime
sought after. Einstein had famously spent quite a long time in search for a
“Unified Field Theory”. This paper presents a fuzzy logic programming (FLP)
reconciliation of the theory of general relativity (Einstein’s field equations) and
relativistic quantum mechanics (Dirac’s equation). This problem can be formu-
lated as: “If general relativity regards gravity as spacetime and quantum mechan-
ics provides a wave function (Ψ - Dirac’s equation) evolution in time, it seems
impossible for those two theories to be (mathematically) unified. Attempts in-
clude unsuccessful perturbative quantum gravity, string theories culminating in
M-Theory but with neither experimental results nor observations [3].

It was found that the language of “Fuzzy Logic Programming FLP” [1] can
naturally do the job. This is done via re-examination of the logical relationship
between space and time. The discovery of a one-to-one correspondence between
the space/time dichotomy and that of syntax/semantics made FLP a naturally
appealing candidate for this intractable reconciliation; SySBPD vs. SpTBPD.

Philosophical Foundation:

E = mc2 implies that E and m are different (manifestations) “essences” of the
same “existence”. The “Principality” of the existence over the essence should
be obvious. There can be no “Principality” for E over m nor vice versa. This
can be called “Energy/Mass” Principality Bi-Polar Disorder; to render the term
connotating and its meaning connotated to!

More importantly, the lessons of general relativity dictate that if the Earth
gets into the event horizon of a black hole, space and time would swap posi-
tions. This implies that space and time are different manifestations “essences”
of the same “existence”. It should be self-evident that there is no “Principality”
outweigher for neither space nor time over one another. This is the “Space-
time/Timespace Principality Bi-Polar Disorder”. SpTBPD exploits RE,m(E, m)
vs. RSpT (space, time), where RE,m(E, m) means energy and mass can swap po-
sitions in special relativity and RSpT (space, time) means space and time swap
positions in general relativity.

It is easy to see that space and time are always swapping positions but only com-
pletely within a black hole. Solutions to Einstein’s field equations are spacetimes
which are Lorentzian manifolds. The tangent vector at any point in the manifold

35

is classified as spacelike (swapping positions spacewise) or timelike (swapping po-
sitions timewise) according to the negative/positive value of the manifold’s metric
[4]. If (M, g) is a Lorentzian manifold (so g is the metric on the manifold M)
then the tangent vectors at each point in the manifold can be classed into three
different types. A tangent vector X is:

1. timelike if g(X, X) > 0

2. null if g(X, X) = 0

3. spacelike if g(X, X) < 0.

General relativity [5] is understood as spacetime tells matter how to move, then
in SpTBPD so should timespace. And if matter tells spacetime how to curve in
general relativity, then in SpTBPD it should tell timespace too. The difference
between spacetime and timespace:

1. For a single observer at one point, they are identical.

2. For two observers A, B at two different locations X, Y , we have:

Spacetime(A,X) = Timespace(B,Y)

or

Timespace(A,X) = Spacetime(B,Y)

That is to say, they are reciprocal. This is a corollary of the Space/Time Prin-
cipality Bi-Polar Disorder. So, SpTBPD Quantum Theory of Gravity regards
gravity as reciprocal spacetime/timespace and quantum mechanics as reciprocal
wave functions Ψ-(particle)/ΨBPD-anti-particle. SpTBPD regards spacetime ge-
ometry as given by the Einstein Field Equations is a result of a fermion spin-like
angular motion (in a Hilbert space) of flat spacetime and flat timespace. This
would justify the dynamic spacetime geometry. This philosophical interpreta-
tion of spacetime geometry could extend (potentially reconciling) von Neumann
mathematical foundations of quantum mechanics to general relativity. This is a
new hypothesis. Another one is quantum interpretation of the Big Bang as well
as the expansion of the universe. This is due to the particle/anti-particle view
of spacetime/timespace. Spacetime (in-order) is identical to timespace (disor-
der). The difference is a matter of state. The Pauli exculsion principle could be
extended from quantum mechanics to gravity in SpTBPD.

Mathematical Formulation: SySBPD vs. SpTBPD

The following equations relate two solutions of Einstein’s equations with another
two of Dirac’s. Einstein’s solutions are two BPD-conformally related Lorentzian

36

manifolds (as defined below). Both are related by a SySBPD FLP predicate
Gravity. Dirac’s two solutions are two wave functions, for particles and anti-
particles. Both are related by another SySBPD FLP predicate Quantum. The
two manifolds with both wave functions are related by κ, the Universe Bi-Polar
Disorder Constant, the prediction of SpTBPD.

1. Equal(µΨ, |Ψ| − |ΨBPD|)← Quantum(Ψ, ΨBPD, µΨ)

2. Equal(µgravity, κ.µΨ)← Gravity(Lorentz, LorentzBPD, µgravity).

Where Gravity and Quantum are tertiary FLP predicates as in [1], and Equal is
a binary non-fuzzy predicate whose meaning is obvious. Lorentz and LorentzBPD

are any two BPD-conformally related Lorentzian solutions of Einstein’s equa-
tions. Let g be the Lorentzian manifold metric and ĝ LorentzBPD manifold
metric, they are conformally related if ĝ = Ω2g (standard definition [3]) and
BPD-conformally related if ĝ = −Ω2g (new definition). So, µgravity = Ω2.

From [3], and for the paper to be self-contained: “Two metrics g and ĝ are
conformally related if ĝ = Ω2g for some real function Ω called the conformal
factor. Looking at the definitions of which tangent vectors are timelike, null and
spacelike we see they remain unchanged if we use g or ĝ. As an example suppose
X is a timelike tangent vector with respect to the g metric. This means that
g(X, X) > 0. We then have that ĝ(X, X) = Ω2g(X, X) > 0, so X is a timelike
tangent vector with respect to the ĝ too. It follows from this that the causal
structure of a Lorentzian manifold is unaffected by a conformal transformation.”

A solution to Dirac’s equation is the wave function Ψ associated with the quantum
system particles and ΨBPD is the wave function associated with the corresponding
anti-particles. It is to be noted that the above FLP rules/equations are not
equivalent to their algebraic counterpart:

Ω2 = κ .µΨ = κ .|Ψ−ΨBPD|

The interpretation of the predicate Gravity(Lorentz, LorentzBPD, µgravity) is that
for two BPD-conformally related spacetimes, for them to be in-order they have
to be in disorder. Non-fuzzy Gravity implies identical manifolds while fuzzy
Gravity admits different manifolds. So, “p is fuzzy iff p is not fuzzy” reads dy-
namic perpetual oscillations (gravitational waves) of spacetime. These waves are
continuous and perpetual and obviously much easier to phrase logically. They
continue like this perpetually as the lessons of general relativity dictate a dynamic
geometry of spacetime. Space and time lose order the more the speed approaches

37

speed of light when they swap positions. SySBPD is expressed as “p is fuzzy iff p
is fuzzy”, where p as in [1]: p(t1, t2, . . . , tn, µ). Or, “p is an atom of classical logic iff
it is not an atom of classical logic”. This is the SpTBPD/SySBPD space/time
vs. syntax/semantics mathematically representing the dynamic nature of space-
time as well as unifying it with quantum mechanics. κ is the “Bi-Polar Disorder
Universal Constant” which can be observed by experiments relating gravitational
waves to quantum ones.

Where the FLP equations above predict a Bi-Polar Disorder dichotomy rather
than the usual symmetry interpretation. SpTBP naturally explains “CP viola-
tion” as well as the 720 degrees for an electron to return to its state rather than
360 degrees (either in-order state or disorder, thus Bi-Polar Disorder). This
explanation cannot be provided by the algebraic equation which only gives the
mathematical prediction. The meaning of this formula that the two Lorentz
manifolds (perpetually) oscillate between two states. Once they are identical
(classical logic programming), the other with the deficit µgravity (FLP). It is im-
possible to formulate this sort of oscillation as a wave against time; as usual
in physics. This new logical formulation resolves the problem. Lorentz and
LorentzBPD metrics describe two curved spacetimes (spacetime and timespace)
in BPD, thus (potentially) explaining ripples in spacetime geometry. The final
paradox is that SySBPD is highly undesirable for computer science wouldn’t be
at all for physics.

Discussion & Conclusion:

The following questions are addressed:

1. Can SpTBPD be tested by experiment?

2. Does it make new predictions?

3. Does it generate new hypotheses?

4. Does SpTBPD provide new explanations for strange observations?

5. SySBPD implications to physics is SpTBPD compared to late awakening
to Godel’s Incompleteness Theorem [1930-2002!!!]; in [2].

6. Is it a proposal for final theory?

No theory is considered to be apodictically true unless supported by experimen-
tal results and observations. SpTBPD is founded on general relativity and rel-
ativistic quantum mechanics. So it is obvious that the prediction of a “Universe
Bi-Polar Disorder Constant κ” relating spacetime/timespace from one side to Ψ
(particle)/Ψ (anti-particle) from the other can be tested by experiment. In addi-
tion, several new hypotheses/new explanations have been (naturally) generated:

38

1. SpTBPD regards gravitational waves (spacetime/timespace Bi-Polar Dis-
order) in curved space time as a result of fermion spin-like angular motion
(in a Hilbert space) of flat spacetime and flat timespace.

2. The mathematical foundations of quantum mechanics (Hilbert spaces) could
be unified with that of general relativity. The view of two Lorentzian man-
ifolds in Bi-Polar Disorder (BPD-conformally related) can be restricted to
two flat spacetime/timespace at quantum level. So, space/time dichotomy
(spacetime vs. timespace) at both the super-galactic and the sub-atomic
levels.

3. A quantum interpretation of the Big Bang and the expansion of the universe
due to the new dichotomy of particle/anti-particle vs. spacetime/timespace.

4. Extending the Pauli exclusion principle from the sub-atomic level to the
super-galactic.

5. When the (poor) author first learnt of the 720 degrees for an electron to
return to its original state, it was no surprise unlike many others. This is a
natural SpTBPD quantum view of in-order and disorder states.

6. When the (poor) author learnt that “CP violation” is not complete sym-
metry, he felt that was absolutely normal and consistent with SpTBPD.
SpTBPD predicts Bi-Polar Disorder in nature rather than symmetry. But
in order to maintain the order, there has to be disorder (from the Big
Bang to the expansion of the Universe), resulting whenever the symmetry
attempts to become complete, it could recur somewhere else incomplete.

The answers are positive for SpTBPD: It makes a new prediction κ that can be
found by experiment and it provides new hypotheses. Not only this, but also it
provides (natural) and consistent explanations for unexplained phenomenon. The
story about the implications of the celebrated Gödel’s Incompleteness theorem is
indeed a sad one as detailed in the paper by Reverend Father Professor Stanley L.
Jaki [2]. A more bizarre story is expected for fuzzy logic programming where new
dichotomies have been identified and mathematically related to well-established
ones: Syntax/Semantics vs. Spacetime/Timespace vs. Particle/Anti-particle vs.
Wave/Particle Bi-Polar Disorder, not Wave/Particle duality!

Whether it is a proposal for a final theory, the answer is simply “No”. In [2],
it has been confirmed that even after considering Gödel’s Incompleteness theo-
rem’s implications to physics, a final theory is possible; but it is not possible to
prove this fact rigourously. But Gödel’s Incompleteness theorem was for Peano’s
arithmetic, i.e. natural numbers. Physics must employ real numbers. So, if

39

Peano’s arithmetic has infinite number of axioms, the author presents the hy-
pothesis that a final theory wouldn’t need only infinite number of axioms, but
also a mathematical language whose alphabet is infinite!

References:

1. Rafee Ebrahim Kamouna, “Fuzzy Logic Programming”, Fuzzy Sets and
Systems, 1998.

2. Stanley L. Jaki:“A Late Awakening to Gödel in Physics”, pirate.shu.edu/

jakistan/JakiGodel.pdf, accessed 15/02/2008.

3. Stephen W. Hawking, “Gödel and the End of Physics”, www.damtp.cam.ac.uk/

strtst/dirac/hawking, accessed 15/02/2008.

4. http://en.wikipedia.org/wiki/Causal structure.

5. http://en.wikipedia.org/wiki; keywords: “Introduction to General Relativ-
ity” and “General Relativity”.

40

