
Asymptotic estimates of the number of
combinatorial structures using dynamic

programming

Michal Forišek1

forisek@dcs.fmph.uniba.sk

1 Comenius University, Bratislava, Slovakia

Keywords: dynamic programming, forbidden submatrices, tiling with squares, asymp-
totic estimates
Abstract: In the paper we present a universal technique that gives asymptotically
exact estimates of the number of certain combinatorial structures. The technique can
be applied in cases where the exact number of said structures can be computed using
a specific linear form of dynamic programming. We demonstrate the technique on
counting the number of matrices with a forbidden submatrix, and on counting the
number of tilings with squares.

1 Overview
In the paper we apply results from linear algebra to efficient combinatorial algo-
rithms. In this part of the paper we present an overview of known results we use.

1.1 Vector length under a repeated linear transformation
Given a vector u and a matrix A, we will consider a sequence of vectors defined as
follows: ui = uAi. In particular, we will be interested in |ui| as a function of i.
Theorem 1 addresses this.

Note that all vectors and matrices in this paper will have nonnegative integer
elements. Still, we state Theorem 1 in a more general way.

Theorem 1 Let u be a k-dimensional row vector, and let A be a k × k matrix (both
over the complex numbers field). Additionally, assume thatA has k linearly indepen-
dent eigenvectors. Let f be the function defined as f(n) = |uAn|. Then f belongs

to Θ(αn), where α is the maximum modulus (i.e., absolute value) of an eigenvalue
of A that corresponds to an eigenvector v that is not orthogonal to u.

The proof is obvious: it is sufficient to considerA as a linear transformation with
the set of linearly independent eigenvectors as its base. The length of the projection
of u onto v is multiplied by α in each iteration.

Corollary 1 The absolute value of the largest element of the vector uAn must be
Ω(αn/

√
k). If k is a fixed constant, the largest element of uAn is asymptotically

equal to αn, and thus the sum of absolute values of all elements of uAn is also
asymptotically equal to αn.

1.2 Dynamic programming
Dynamic programming is a technique used to design efficient algorithms. This tech-
nique can be applied to problems with a so-called optimal substructure: the solution
of any nontrivial instance can be formulated in terms of solutions of other, smaller
instances (usually subinstances of the original instance). Whenever we observe such
a structure, we can turn it into an algorithm that recursively solves instances, making
sure each of the necessary instances is solved only once. Alternately, we can fix
any valid topological order for the instances we need to compute, and compute their
solutions iteratively. From a mathematical point of view, dynamic programming rep-
resents an efficient way of computing a subset of values of a given recurrence.

The computation of the n-th Fibonacci number is a trivial example of dynamic
programming. The definition gives us a recursive formula: ∀n ≥ 2 : Fn = Fn−1 +
Fn−2. However, a program that simply rewrites this formula into a recursive function
will run in exponential time. In order to obtain a polynomial time complexity, we
have to either apply memoization1 or we have to compute the values iteratively in
the order F2, F3, . . . , Fn, always remembering at least the last two computed values.

1.3 Dynamic programming as a linear transformation
In some cases of dynamic programming, the computation of a new value of the recur-
rence can be written as a linear combination of some previous values (and possibly
of some easy-to-compute values such as polynomials). Whenever this happens and
the instances happen to have a suitable structure, we can express the computation of
successive values of the recurrence as an iteration of a suitably chosen linear trans-
formation. For example, we can easily verify that Fibonacci numbers satisfy the
following:

(Fn, Fn+1)

(
0 1
1 1

)
= (Fn+1, Fn+2)

1I.e., store the return value of each function call, and only make a function call if we don’t have its
return value stored yet.

As matrix multiplication is associative, we can then writeFn = (0, 1)

(
0 1
1 1

)n(
1
0

)
.

This notation has many practical applications. First of all, we can now use it to
obtain a more efficient algorithm to compute the value Fn. (In order to do so, we
need to use exponentiation by squaring, and a fast algorithm to multiply big integers.)
Additionally, our Corollary 1 tells us that Fibonacci numbers grow asymptotically
as fast as ϕn, where ϕ = (1 +

√
5)/2 (the golden ratio) is the bigger of the two

eigenvalues of the above matrix.
Our goal in this paper is to show how to generalize this observation to more

complicated forms of dynamic programming, and to use it to easily obtain asymp-
totic estimates of the number of objects counted by said dynamic programming.

2 Forbidden submatrices of a constant size
For simplicity, all matrices in this part of the paper are 0-1 matrices, i.e., each element
is either 0 or 1. This is only for the sake of a simpler presentation, all results can
easily be generalized.

The problem we are now going to solve can be viewed as a generalization of the
well-known problem of counting strings with a forbidden substring. (See section 4.7
in [1].) The main question we will be asking is the following one: Given r, c, and a
matrix Z, what is the number of matrices of dimensions r × c that do not contain Z
as a (contiguous) submatrix?

We are going to focus on a subproblem of this problem: we will consider r a
fixed constant and we will analyze the number of matrices as a function of c.

2.1 Counting matrices using dynamic programming

As an example, consider the forbidden matrix Z =
(

0 1 0
1 0 1
0 1 0

)
. (Again, all our con-

structions can be generalized to arbitrary dimensions and content of Z.) Let P [r, c]
be the number of r × c matrices that do not contain Z.

How can we use dynamic programming to compute the values P [r, c]? The trick
is to use a larger set of states. Instead of computing P [r, c] directly, we shall compute
the values P [r, c, sc−1, sc], where sc−1 and sc are the full contents of columns c− 1
and c of the r × c matrix. For example, P [3, 10, 001, 011] is the count of matrices
of dimensions 3× 10 that do not contain Z, and have

(
0
0
1

)
and

(
0
1
1

)
in the last two

columns. (In general, the state P [r, c, . . .] will contain the last x−1 columns, where
x is the number of columns in Z.)

For these new values easily write a linear recurrence. In our example with a 3×3

matrix Z these are:

P [r, 2, y1y2 . . . yr, z1z2 . . . zr] = 1

P [r, c+ 1, y1y2 . . . yr, z1z2 . . . zr] =
∑

P [r, c, x1x2 . . . xr, y1y2 . . . yr]

where the sum in the general case ranges over all contents of column c− 1 such that
the three columns c − 1, c, and c + 1 taken together do not contain the forbidden
submatrix Z.

For example, P [4, 5, 1101, 1010] counts good matrices of the form
(

? ? ? 1 1
? ? ? 1 0
? ? ? 0 1
? ? ? 1 0

)
.

Our recurrence computes this value by trying all possibilities for the contents of the
third column. Once we fix the contents of the third column (and verify that Z does
not appear in the last three columns), we can forget the fifth column – clearly, the
number of valid ways to fill in the first two columns doesn’t depend on the con-
tents of the fifth column. This reduces the computation of P [4, 5, 1101, 1010] to
the computation of some values P [4, 4, ????, 1101]. More precisely, in our example
P [4, 5, 1101, 1010] is the sum of all such values except for P [4, 4, 0010, 1101] and
P [4, 4, 1010, 1101]. (For these two we have an occurrence of the forbidden subma-
trix Z in columns 3-5.)

The above algorithm needs roughly rc23r arithmetic operations (with big inte-
gers) to compute a particular value P [r, c]. In practice, this algorithm is therefore
viable only if the number of rows happens to be small enough. (A more clever
application of dynamic programming can reduce the exponential part of the time
complexity to just 22r, but this is beyond the scope of this paper. Additionally, this
optimization is not compatible with the construction shown in the next section.)

2.2 Counting matrices using an iterated linear transformation
If we know all the values P [r, c, ???, ???], we can use them to compute all the values
P [r, c + 1, ???, ???]: for each new value, we compute the sum of some of the old
values. This computation can be succinctly represented as a linear transformation.
More precisely, for any fixed value r we can find a matrix Ar with the following
property: for each c, if we take the vector of all values P [r, c, ???, ???] and multiply
it by Ar, we will obtain the vector of all values P [r, c + 1, ???, ???]. (Note that the
matrix Ar is the same for all values of c.)

The dimensions of Ar are 22r × 22r, but the matrix is sparse: there are at most
2r ones in each row and column.

Hence, for any c ≥ 2 we can compute the vector of all P [r, c, ???, ???] as
(1, 1, . . . , 1)Ac−2

r . (Here, the vector of all 1s is the vector of all values P [r, 2, . . .].)
Then, the value P [r, c] is simply the sum of all elements of this vector. As with the
Fibonacci number example, this now gives us a new algorithm to compute P [r, c]:
now the number of arithmetic operations is exponential in r, but only logarithmic (as
opposed to linear) in c. For example, we can easily evaluate P [7, 10100].

2.3 Asymptotic estimate of the number of matrices
For any forbidden submatrix Z and any fixed r (both need to be small enough
in practice) we can now apply the technique shown in the Overview section: we
will compute the matrix Ar, verify that it has the required properties by finding its
eigenvectors and eigenvalues, and then we find α as the maximum modulus over
all eigenvalues that correspond to eigenvectors that are not orthogonal to the vector
(1, . . . , 1). We can then conclude that P [r, c] as a function of c grows asymptotically
exactly as quickly as αc.

(In practice, for problems of this type α is usually simply the largest eigenvalue,
which is a positive real.)

2.4 The number of matrices with a forbidden 3× 3 pattern
In this section we analyze the number of r×cmatrices that do not contain our exam-
ple forbidden submatrix Z =

(
0 1 0
1 0 1
0 1 0

)
. In the table we give two different coefficients

for each r. The coefficient αr is the base of the exponential function: the number of
good r × c matrices, as a function of c, grows as fast as αcr. The coefficient βr is
computed as (log2 αr)/r. Hence, the number of good r × c matrices is proportional
to 2βrrc.

Table 1: Count of matrices with a specific forbidden 3× 3 submatrix.

r 3 4 5 6 7 8 9
αr 7.98456 15.9398 31.8217 63.5276 126.824 253.186 505.451
βr 0.999071 0.998641 0.998388 0.998218 0.998098 0.998007 0.997937

Values up to r = 6 were computed by a straightforward application of the algo-
rithm described above. For larger values of r we added an extra step: the reduction
of symmetries. Before computing Ar we merged equivalent states together. This
speeds up the computation significantly. For example, for r = 9 we obtained a
matrix with side 1146 instead of a matrix with side 218 = 262 144.

To conclude this example, we note that the values given in the table have been
rounded for presentation, but in principle these are exact values. We can compute
them to any precision, or give an integer polynomial that has the value as a root.

2.5 The number of noise matrices
In this section we derive exact asymptotic estimates of the growth of the number
of noise matrices, i.e., matrices that do not contain any of the following patterns:(

0
0 0 0
0

)
and

(
1

1 1 1
1

)
. In [2] the number of these matrices was experimentally es-

timated for 3 ≤ r ≤ 6. We note that the experimentally obtained estimates of

constants βr in [2] differ from correct values in the sixth decimal place. This is be-
cause the method used to estimate those values did not converge fast enough. In the
table below we present exact results up to r = 9.

Table 2: The number of noise matrices.

r 3 4 5 6 7 8 9
αr 7.53113 14.2986 27.1246 51.4594 97.6259 185.211 351.371
βr 0.970955 0.959450 0.952305 0.947561 0.944170 0.941628 0.939650

3 Tiling using squares
As the second example of the strength of this technique we will show a solution
to the following problem: for a fixed r, what is (as a function of c) the number of
ways in which we can tile the rectangle r × c using arbitrary squares with integer
side lengths? (The tiles must be non-overlapping and they must cover the entire
rectangle.) A sample tiling for r = 5 and c = 19 is shown in Figure 1.

Figure 1: A sample tiling using squares.

Again, we can use dynamic programming to count such tilings exactly. The main
idea is to construct the tiling incrementally. In each step we will find the rightmost
column that is not tiled completely, and we will try all possibilities how this column
can be tiled. Figure 2 shows one possible first step of tiling a rectangle with r = 6.

Figure 2: One possible way of tiling the last column.

For each possible way of tiling the last column we make a recursive call to com-
pute the valid tilings of the rest of the rectangle. Now, obviously, these are not
instances of the original problem. This is because some rows already have the last
few unit squares covered. Hence, the general problem we are going to solve recur-
sively looks as follows: “What is the number of valid tilings of an r × c rectangle,
given that the last p1 cells in the first row, p2 cells in the second row, . . . , and pr cells
in the last row are already covered?”

Figure 3 shows an example of a state where we already have (1, 1, 1, 0, 0, 2, 2)
cells tiled. When counting the tilings for this state, we need to try two possibil-
ities: either the last column contains two 1 × 1 squares on the empty cells, or it
contains a single 2 × 2 square there. Both possibilities lead into states where the
number of columns left to tile is one smaller. In the first case the numbers of already
tiled cells in rows are (0, 0, 0, 0, 0, 1, 1), while in the second case these would be
(0, 0, 0, 1, 1, 1, 1).

Figure 3: An example of continuing an existing tiling.

Clearly, each pi will always be less than r. This gives us an upper estimate: the
number of instances we need to solve in order to compute the number of tilings of an
r× c rectangle is O(crr). (This estimate is way too loose, as only a small fraction of
all states is actually reachable in valid tilings. It is possible to give a better estimate,
but we don’t need it. For our purpose, it is sufficient to note that if r is a fixed
constant, we have an algorithm for which the number of arithmetic operations is
linear in c.)

As in the previous section, we can now write the computation of our recurrence
as an iterated application of a suitable linear transformation. We can algorithmically
construct the corresponding matrix, do the necessary checks, and find the largest
suitable eigenvalue to get an exact asymptotic estimate of the number of tilings.
(The vector of initial values for this recurrence is a vector of all zeros, with a single
1 that corresponds to the state where all pi are zero.)

The results of our computation are shown in Table 3. Row s gives the number of
reachable states for a specific value of c – that is, the number of different (p1, . . . , pr)
that can actually be obtained. The constant αr is the size of the corresponding eigen-
value: the number of valid tilings of an r × c rectangle, as a function of c, grows
asymptotically as fast as αcr. The values αr are rounded.

Table 3: The number of tilings using squares.

r 1 2 3 4 5 6 7 8 9 10
s 1 2 5 11 24 53 118 261 577 1276
αr 1.0000 1.6180 2.1479 2.9615 4.0551 5.5573 7.6159 10.4372 14.3035 19.6020

The count of these tilings is in OEIS as [3] (and several related sequences). In
addition to the material available in OEIS we gave an efficient exact algorithm for
small r and almost arbitrarily large c, and exact values of asymptotic growth rates

for small r.

4 Conclusion
The technique shown in the paper should be applicable for many similar combinato-
rial problems.

As a direction for future research we note that some similar combinatorial prob-
lems also exhibit simpler recurrences – however, these are hard to find and prove. It
would be interesting to try applying this technique to be able to find and prove the
correctness of such simplified recurrences automatically.

References
[1] R. Stanley, Enumerative Combinatrics, vol. 1. Cambridge University Press,

1997.

[2] M. Opial, “Bounded Locally Testable Matrices,” 2015, Bachelor’s Thesis,
Comenius U.

[3] OEIS Foundation Inc., “The On-Line Encyclopedia of Integer Sequences, se-
quence A219924,” 2016, http://oeis.org/A219924 (retrieved March 2016).

