
Simon Peyton Jones (giving the talk)

Andrew Goldberg (who did all the work)

Microsoft Research

 Well-known algorithms are fast enough on a
reasonable computer but
 A handheld is not a “reasonable computer”

 Servers consume lots of energy (they are put
next to hydro-electric power stations)

 The “well known” algorithms are Terribly
Wasteful

 The subject of this talk: can we do better?

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Still no cigar

A* with
landmarks

Goldberg, Harrelson 2005

A* with
landmarks
and reach

Goldberg,
Kaplan, Werneck
2006

Hart, Nilsson,
Raphael 1968

Andrew Goldberg
MSR Silicon Valley

1. Put a VERTEX at every intersection

2. Put an EDGE between connected intersections

3. LABEL the edges with travel times

10

152

3

88

7

4 1

1

4

NB: long road,
but fast, so
short time

NB: short road,
but slow, so

long time

4. Now ignore the original map

5. Choose START and END points

10

152

3

88

7

4 1

1

4

10

152

3

88

7

4 1

1

4

5. Choose START and END points

6. Find shortest path

10

152

3

88

7

4 1

1

4

7. Draw on original map, following roads

8. Discard the vertices and edges

 Given a “edge-weighted un-directed graph”

 And any two points A and B

 Find the shortest path from A to B

 Length of shortest path = SP(A,B)

10

152

3

88

7

4 1

1

4

A
B

 My mother:
 Start at A

 Drive around at random until you find B

 Slow, and even if she arrives, it definitely
isn’t by the shortest route

10

152

3

88

7

4
1

1

4

 Divide vertices V into 3 groups
 Red: V knows nothing
 Yellow(n): V knows something:

 the distance from A to V is no more than n
 Green(n): V knows something, and so do V’s neighbours:

 the distance from A to V is no more than n
 V’s immediate neighbours know that fact

 Start with A = Yellow(0), everything else Red

 Choose any Yellow(n) vertex
 Make it Green(n)
 “Tell the neighbours”

 Stop when all are green

Starting at A
Destination is B

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15

2

3

88

7

4

0

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

10

15

2

3

88

7

4
10

0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4
10

17
0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Don’t
increase
me to 30!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W,
change W as follows:

 Yellow or Red -> Yellow(n+k)

 Green(n): no change

V W
k

10

15
2

3

88

7

4
10

17
0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4
10

20

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Not
shortest

path!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4 24
10

20

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Do not
increase
me from
10 to 21!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W,
change W as follows:

 Red -> Yellow(n+k)

 Yellow(m) -> Yellow(n+k), if n+k < m

 Green(n): no change

V W
k

10

15
2

3

88

7

4 24
10

20

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4 11
10

11

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Went
from

green to
yellow!!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W,
change W as follows:

 Red -> Yellow(n+k)

 Yellow(m) -> Yellow(n+k), if n+k < m

 Green(m) -> Yellow(n+k), if n+k < m

V W
k

General rule:
Vertex turns yellow when its n decreases

Think of Red as ∞

 Claim: when all vertices are green, every
vertex knows its exact shortest path

 NOT OBVIOUS

 But true. [Exercise: prove it]

 Claim: when all vertices are green, every
vertex knows its exact shortest path
[Exercise: prove it]

 BUT this is stupid
 We may visit each vertex many times (because of

Red -> Yellow -> Green -> Yellow -> Green -> Yellow)

 We must visit every vertex (eg examine all roads
in Glasgow when finding a route from London to
Reading)

Zillions of green
vertices

1 1

2 2

A B

My
mother’s
method

Labelling
method

Does not work

Works, slowly

 Europe
 18M vertices

 43M edges

 Visiting all edges and vertices is no big deal

 But it is STILL stupid:
 Slow on a hand-held (seconds or minutes to re-

plan your route)

 Would you prefer a server farm with 500
servers? Or 5?

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose any Yellow(n) vertex
 “Tell the neighbours”

 Make it Green(n)

 Stop when all are green

IDEA:
Choose a

good
vertex!

10

17

0

15

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose any the Yellow(n) vertex with smallest n
 “Tell the neighbours”

 Make it Green(n)

 Stop when all are green

Choose a good
one!

“Good” ones
are close to A

10

17

0

15

 Roughly speaking
 Take nearest yellow vertex
 Turn it green, and its more distant neighbours

yellow

B

1. No vertex changes Green -> Yellow, so we
visit each vertex at most once

2. Can stop when B becomes Green (rather
than when all vertices become Green)

WHY?

 Dijkstra properties
 Yellow(n): shortest green-only path A to V is exactly n

 Green(n): shortest path A to V is exactly n

A V

A “green-only path”

 Dijkstra properties
a. Yellow(n): shortest green-only path A to V is exactly n

b. Green(n): shortest path A to V is exactly n

 True initially: A = Yellow(0)

 Choose the Yellow(n) vertex V with smallest n

 Make it Green(n): (b) remains true
 We know shortest green-only A-V path is n

 Any shorter A-V path must go GGGGY(m)....Y(n)

 Hence m<n, contradication!

 “Tell the neighbours”: makes (a) true again

A V

1. No vertex changes Green -> Yellow, so we
visit each vertex at most once
 Because once Green, it has the right n, so n

cannot decrease any more

2. Can stop when B becomes Green (rather
than when all vertices become Green)
 Because Green vertices have exact shortest

path.

Start

Stop

 Far, far too
many roads
explored!

Pacific North West USA

 Idea: start
from both
ends and
work
towards the
middle

Pacific North West USA

 Idea: start
from both
ends and
work
towards the
middle

 Better

 But still far
too many
roads
explored

Pacific North West USA

Start

Stop

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still1959

Edsger Dijkstra 1930-2002

 Still far too
many roads
explored

 Why???

 Space warp!

Pacific North West USA

Start

Stop

2min
Idea

Exploit our knowledge

of lower bounds
“The shortest path
from W to V cannot

be less than”

V

W

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose Yellow(n) vertex V with smallest n
 Make it Green(n)

 Tell its neighbours

 Stop when B is Green

“Good” ones
are close to A

10

152

3

88

7

4
1

1

4

Not
necessarily!

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose Yellow(n) vertex V with smallest (n+L(V))
 Make it Green(n)

 Tell its neighbours

 Stop when B is Green

L(V) is a lower bound for
shortest path V-B

10

152

3

88

7

4
1

1

4

“Good” node has smallest
estimated complete path

L(V)=0 gives
Dijkstra

 L(V) = Euclidean distance CrowFlies(V,B)

 Birmingham: 120+400 = 520
 Bristol: 100+550 = 650
 So work on Birmingham first (unlike Dijkstra)

0

B

100

Exact paths

London Bristol

Troon (near
Glasgow)

120

Birmingham

Crow-flies
estimates

400

550

 Provided the lower bound estimate L(V) is
“sensible” (which CrowFlies is) then yes, A*
finds the exact shortest path

 NOT OBVIOUS [prove it!]

 “Sensible” iff
 L(B)=0

 It respects the triangle
inequality: L(V) ≤ VW + L(W)

 Thm: if L is “sensible” then L(v) ≤ SP(V,B)

B

V

W

L(V) = 10

L(W) = 5

1

L(V) is not
sensible

 Euclidean bounds do not work well for route-finding
in road maps

 Why? Because motorways are like space warps!

 Need CrowFlies(A,B) ≤ SP(A,B), so the crow must fly
at the fastest motorway speed

 Which means that CrowFlies(A,B) is small

 Which is bad, bad, bad.

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Hart, Nilsson,
Raphael 1968

Still no cigar

Peter Hart 1940ish- Bert Raphael 1936-

Nils Nilsson 1940ish-

 Choose Yellow(n) vertex V with smallest (n+L(V))

A B

Exact distance = n L(V) = lower
bound V-B

V

0

Exact V-B
distance

L(V)

 L(V) = 0 gives Dijkstra
 L(V) = exact distance V-B means we always pick precisely

the right vertex
 Bigger L(V) is better (provided always < exact distance)

 L(V) is less than the exact distance V-B
 n is the exact distance A-V
 n+L(V) is less than the exact distance A-B

 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B
distance

L(V)

B

A

 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B
distance

L(V)

B

A

 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B
distance

L(V)

B

A

 Idea!
 Fix a few landmarks
 Pre-compute exact shortest paths SP(V,L) from

every vertex V to each landmark L

 Now lower bound Bristol-Troon
= 553 – 16 (triangle inequality again)

B

100
Bristol

Glasgow

120

Birmingham

553

Troon

452

16

Landmark

Exact
shortest

path length

 Idea!
 Fix a few landmarks (eg a dozen or two)

 Pre-compute and store exact shortest paths
SP(V,L) from every vertex V to each landmark L

 Main point: the pre-computation takes
account of motorways

 Good lower bound if
 Destination is near the landmark

 Or the landmark is “beyond” destination

B

120
Landmark

 Good lower bound if
 Destination is near the landmark

 Or the landmark is “beyond” destination

 How do we find a landmark that is “beyond”
the destination? Just picking one may
sometimes be bad. So use several!

 Easy to use lots of landmarks at once:
 L(V) = max(L1(V), L2(V), ..., Ln(V))

 The max of a set of lower bounds is still a lower
bound

Pacific North West USA

Much, much
better!

Start

Stop

Average number
of vertices

scanned

Maximum number
of vertices

scanned
Landmarks

30 times faster
4 times as much memory used

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Still no cigar

A* with
landmarks

Goldberg, Harrelson 2005

Hart, Nilsson,
Raphael 1968

 Intuition: no point in exploring Treasure Island
(at all) when finding path A-B

 Why not?

 Because

A

B

Treasure Island

No vertex in Treasure Island is
“on the way to anywhere else”

 What does it mean to say “V is on the way to
somewhere?”

 Obviously IS on the
way from to !

 The “reach” of V is
 big if V is on the way

between far-away places
 small if V is only on the

way between nearby places

 “on the way” means
“on the shortest path”

No vertex in Treasure Island is
“on the way to anywhere else”

 The “reach” of V is
 big if V is on the way

between far-away places
 small if V is only on the

way between nearby places

 Small if all shortest paths involving V have
one end near V

 Reach(V) = max { min(SP(A,V), SP(V,B))
| A,B are vertices, and
V is on shortest path A-B }

A B
V

SP(V,B)=10SP(A,V)=3

Vertices with small
reach are not on the

way to anywhere

 Choose Yellow(n) vertex V with smallest n+L(V),
unless Reach(V)<n and Reach(V)<L(V)

 Why?
 One end of any shortest path going through V

must be within Reach(V) of V [defn of Reach]

 But if Reach(V) ‹ n then A is not within
Reach(V) of V (since SP(A,V) = n)

 And if Reach(V) ‹ L(V) then B is not within
Reach(V) of V (since L(V) ≤ SP(V,B))

 So neither A nor B are within Reach(V) of V

 So the shortest path A-B cannot go through V

Start

Stop

ALT (A* + landmarks)

A* + landmarks + Reach

50x fewer vertices
than ALT

20x faster

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Still no cigar

A* with
landmarks

Goldberg, Harrelson 2005

A* with
landmarks
and reach

Goldberg,
Kaplan, Werneck
2006

Hart, Nilsson,
Raphael 1968

 A problem that spans 50+ years, still active today

 ONE algorithm, with a variety of “choose the
next vertex to work on” heuristics

 An ounce of cunning is worth a tonne of brute
force: fantastic gains from simple insights

 Abstraction is the key:
 Boil away the detail to leave an abstract problem

 Clever algorithms underpinned by formal reasoning

 Computer science is a lot more than programming!

