GETTING FROM A TO B:

FAST ROUTE-FINDING USING SLOW
COMPUTERS

Simon Peyton Jones (giving the talk)
Andrew Goldberg (who did all the work)

Microsoft Research

www.computingatschool.org.uk

COMPUTING AT SCHOOL

EDUCATE - ENGAGE - ENCOURAGE

| HOME | THECHALLENGE | JOININGCAS | DOCUMENTS | EVENTS | NEWS |
ABOUT

Computing for the next generation ... Switched On

The “Computing At School” group (CAS) is a membership association run by BCS, The T a
Chartered Institute for IT and supported by Microsoft Research and other industry partners. It SWITCHEDON \}
was created to support and promote the teaching of computer science and other computing ABRACADABRA EES
disciplines in UK schools. Our membership is broad, and includes teachers, examiners,

parents, university faculty, and employers.

Keep up to date with all

CAS was born out of our excitement with our discipline, combined with a serious concern that
our brightest students are being turned off computing by a combination of factors that have
conspired to make the subject seem dull and pedestrian. Our goal is to put the fun back into
computing at school.

resources

We see computing as a rich and deep discipline in its own right, like physics or mathematics.

. an 2009
Like those subjects, computing explores foundational principles and ideas, rather than training Autumn 2009

« Summer 20010

Please join in

The "Computing At School” group (CAS) is a membership association run by BCS, The
Chartered Institute for IT and supported by Microsoft Research and other industry partners. it
was created to support and promote the teaching of computer science and other computing
disciplines in UK schools. Our membership is broad, and includes teachers, examiners,
parents, university faculty, and employers.

CAS was born out of our excitement with our discipline, combined with a serious concern that
our brightest students are being turned off computing by a combination of factors that have
conspired to make the subject seem dull and pedestrian. Our goal is to put the fun back into
computing at school.

We see computing as a rich and deep discipline in its own right, like physics or mathematics.
Like those subjects, computing explores foundational principles and ideas, rather than training

Getting
directions

The work

of a
moment

|2 | Most Yisited

_B_J |

Live Search | MSN | Windows Live

£7 Live Search

Maps

Businesses Collections

CB4 11D, UK to Rome, Lazio, Italy

ﬁ s She;fr.éia@“
DU UNITED @
\D KINGDOM

yungarvan WALES -~/ \ "@Q

CY'I‘RU Lulon ».E%
/ London »,: -

Exeter <

ENGLAND Poole

Enalich Mhanal
.‘:".,"-nn Channe

Caen

Brest_ St.-Maloo

BRITTANY

o Anders
Vannes -~

-,

Y
provie,

Nantes
Nu)rl

La Rochelle
Saintes_

;.
15

Bay of Biscay
Mont-de~Marsan
BASQUE Pau ;
. COUNTRY S
Mvcrosoft? 6n A

- Virtual. Earth"‘\ R'OJA

ASTURIAS .

My |

GHC Q Computing At School

‘*L*“e L BELGIUM Malnz
D)
® Le Havre

Le Maﬁq nSens

BIo«sn

FRANCE
“CENTRE-.,
\,‘“"AUVERGNE

LIMOUSIN

Aunllar
Bordeaux® oBergemC»_: RHONE ALPES

MIDI PYRENEES
@
Toulouse G lu A @

e .
Ho Perpignan

http:f{maps.live.comj#InJ0cD1wb3Muc3EYMTR4aDBIMWs3XI

Computing at School |... e Mational Rail Enquiries

ch4 1jd

Locations Web

2 welcome

. W L LD
Bremen G E R M A N Y

NETH.{
' i) Hanr\over\
®Amsterdam™y 5L @ g3 ‘ '
®Rotterdar ~ Brunswick BRANDENBURG
o *telpzl Conbuso
Breda @Dorlmur'd ARePZI90
Brussel:,o ©Du.;se,do,, THURINGIA G)Dresden
\ g, O Dureqa K SAXONY “Walbrzyc
Frankfurl 1 4
&D . ; £ Bayreutho PragueEl
PPICARDY/ ;"\ - Saarbrua,ken @Flirth - CZECH RE

Reims ® "Q
"; Metz ALSACE T BAVARIA ‘\,‘
\'- \

Parts WA Sluugarl _..) ®
Frenbﬁmo Augbburg ElMunlch
0 e Z""th.'* & 4 AUSTRIA
eme

Lausanne A9 0 DChur |ﬂnSbruck

\\ »\(; ;
® ITALY’CeUef
Lyon g OBresua
T S VENETO

Genoa -
o Gapn 1 BOTOQ"QO ®Ravenna
Nice L Lucca 1
ON S { Nt
e @ Se: Ftorencé A\ MARCHE

|

Groningen

BURGUNDYﬂ

Trieqte 3

Adrialic

Lion Marseille TUSCA‘NY

Bastia
=]

Vilerbv

Finding shortest paths fast
matters

= Well-known algorithms are fast enough on a
reasonable computer but
= A handheld is not a "reasonable computer”

m Servers consume lots of energy (they are put
next to hydro-electric power stations)

= The "well known" algorithms are Terribly
Wasteful

= The subject of this talk: can we do better?

My

mother's T h e sto ry

method
Does not work

v A* with
Works, slowly (1 landmarks
Labelling ™ and reach
method —dB) B

Goldberg,
Kaplan, Werneck
2006

Dijkstra v |
1959 A bit faster still A* with
idi - landmarks
Bidirectional

Dijkstra Still no cigar
Goldberg, Harrelson 2005

w Andr'ew‘Goldber'g
MSR Silicon Valley

A* with
Hart, Nilsson, Euclidean
Raphael 1968 bounds

NB: long road,
but fast, so
short time

NB: short road,
but slow, so
long time

1. Put a VERTEX © at every intersection
2. Put an EDGE between connected intersections

3. LABEL the edges with travel times

How
it
works

4. Now ignore the original map
5. Choose START and END points

How
it
works

5. Choose START and END points
6. Find shortest path

7. Draw on original map, following roads

8. Discard the vertices and edges

So the
real task
IS:

Given a "edge-weighted un-directed graph”
And any two points A and B
Find the shortest path from A to B

Length of shortest path = SP(A,B)

Possible plans

= My mother:
= Start at A
= Drive around at random until you find B

= Slow, and even if she arrives, it definitely
isn't by the shortest route

Starting at A

Labe"ing meThOd Destination is B

= Divide vertices V into 3 groups
= : V knows nothing
= Yellow(n): V knows something:
= the distance from A to V is no more than n
= Green(n): V knows something, and so do V's neighbours:
= the distance from A to V is no more than n
= V's immediate neighbours know that fact

= Start with A = Yellow(0), everything else

= Choose any Yellow(n) vertex
m Make it Green(n)
= "Tell the neighbours”

= Stop when all are green

= : V knows nothing
- = Yellow(n): SP(A,V) < n
Label l 'ng me"'hOd m Green(n): SP(AV)<n,and V's
neighbours know that
Choose a Yellow(n) vertex

« "Tell the neighbours"
* Make it Green(n)

= : V knows nothing
- = Yellow(n): SP(A,V) < n
Label l |ng me'thd m Green(n): SP(AV)<n,and V's
neighbours know that
Choose a Yellow(n) vertex

« "Tell the neighbours"
* Make it Green(n)

= : V knows nothing
- = Yellow(n): SP(A,V) < n

Label l |ng me'thd m Green(n): SP(AV)<n,and V's
neighbours know that

Choose a Yellow(n) vertex

« "Tell the neighbours"
* Make it Green(n)

Don't
increase
me to 30!

Telling the neighbours

® When we turn V to Green(n)

= Tell the neighbours: for each neighbour W,

change W as follows:
o—O

= Yellow or -> Yellow(n+k)
m Green(n): no change

= : V knows nothing
- = Yellow(n): SP(A,V) < n
Label l |ng me'thd m Green(n): SP(AV)<n,and V's
neighbours know that
Choose a Yellow(n) vertex

« "Tell the neighbours"
* Make it Green(n)

= : V knows nothing
- = Yellow(n): SP(A,V) < n
Label l |n9 me'thd m Green(n): SP(AV)<n,and V's
neighbours know that
Choose a Yellow(n) vertex

« "Tell the neighbours"
* Make it Green(n)

Not
shortest

path!

= : V knows nothing
- Do not = Yellow(n): SP(A,V) < n
Label | INg (4[< increase = Green(n): SP(A,V) < n, and V's

me from neighbours know that
10 to 21

Choose a Yellow(n) vertex
« "Tell the neighbours"
* Make it Green(n)

Telling the neighbours

® When we turn V to Green(n)

= Tell the neighbours: for each neighbour W,

change W as follows:
o—O

n -> Yellow(n+k)
m Yellow(m) -> Yellow(n+k), if n+tk < m
® Green(n): no change

= : V knows nothing
- = Yellow(n): SP(A,V) < n
Label l |ng me'thd m Green(n): SP(AV)<n,and V's
neighbours know that
Choose a Yellow(n) vertex

« "Tell the neighbours"
* Make it Green(n)

= : V knows nothing
- = Yellow(n): SP(A,V) < n
Labelling method . Green(n) SP(AV) < n, and V's

neighbours know that

Choose a Yellow(n) vertex
« "Tell the neighbours"
* Make it Green(n)

Went
from
green to
yellowl!

Telling the neighbours

= When we turn V to Green(n)

= Tell the neighbours: for each neighbour W,
change W as follows: k
n -> Yellow(n+k)
m Yellow(m) -> Yellow(n+k), if ntk < m
m Green(m) -> Yellow(n+k), if n+tk <m

General rule:

Vertex turns yellow when its n decreases
Think of Red as o

Labelling method works

= Claim: when all vertices are green, every
vertex knows its exact shortest path

= NOT OBVIOUS

= But true. [Exercise: prove it]

Labelling method works... badly

= Claim: when all vertices are green, every
vertex knows its exact shortest path
[Exercise: prove it]

= BUT this is stupid
= We may visit each vertex many times (because of
Red -> Yellow -> Green -> Yellow -> Green -> Yellow)

= We must visit every vertex (eg examine all roads

in Glasgow when finding a route from London to
Reading)

Zillions of green

o

My

mother's AN (o] oV o F-1

method
Does not work

l wW
Labelling
method

orks, slowly

Hey, computers are fast

= Europe
= 18M vertices
m 43M edges

= Visiting all edges and vertices is no big deal

m But it is STILL stupid:

m Slow on a hand-held (seconds or minutes to re-
plan your route)

= Would you prefer a server farm with 500
servers? Or 5?

Labelling method

= Divide vertices into 3 groups
= Yellow(n)
m Green(n)

= Start with A = Yellow(0), everything else Red

= Choose any Yellow(n) vertex

= "Tell the neighbours

= Make it Green(n) C:}EDESA:
oose a

= Stop when all are green good
vertex!

Dijkstra

Divide vertices into 3 groups

= Yellow(n)
m Green(n)

Start with A = Yellow(0), everything else Red

Choose eny the Yellow(n) vertex with smallest n

= "Tell the neighbours”
m Make it Green(n)

Stop when all are green

Choose a good

onel
"Good" ones
are close to A

Dijkstra does ink-blotting

= Roughly speaking
= Take nearest yellow vertex
= Turn it green, and its more distant neighbours
yellow

Two big advantages

1. No vertex changes Green -> Yellow, so we
visit each vertex at most once

2. Can stop when B becomes Green (rather
than when all vertices become Green)

Why Dijkstra works

= Dijkstra properties
= Yellow(n): shortest green-only path A to V is exactly n
m Green(n): shortest path A to V is exactly n

AO—0—0—0 YV

A "green-only path”

Why Dijkstra works
AO—0—0—0V

= Dijkstra properties
a. Yellow(n): shortest green-only path A to V is exactly n
b. Green(n): shortest path A to V is exactly n

= True initially: A = Yellow(0)

= Choose the Yellow(n) vertex V with smallest n

m Make it Green(n): (b) remains true
o We know shortest green-only A-V path is n
o Any shorter A-V path must go GGGGY(m)....Y(n)
o Hence m<n, contradication!

m "Tell the neighbours”: makes (a) true again

Two big advantages

1. No vertex changes Green -> Yellow, so we
visit each vertex at most once

m Because once Green, it has the right n, so n
cannot decrease any more

2. Can stop when B becomes Green (rather
than when all vertices become Green)

m Because Green vertices have exact shortest
path.

till too slow

= Far, far too
many roads
explored!

acific North West USA

Idea: start
from both
ends and
work

towards the
middle

till too slow

North West USA

Il too slow

St

= Tdea: start
from both
ends and
work

towards the
middle

= Better

= But still far
Too many
roads
explored

Pacific North West USA

My

Ll Story so far

method
Does not work

Works, slowly

Labelling
method

w Faster, but not much

1959 v A bit faster still

Bidirectional

,\, N
B

Dijkstra Edsger Dijkstra 1930-2002

Still too slow

Still far too
many roads
explored

Why???

Space warp!

Idea

Exploit our knowledge
of lower bounds

“The shortest path
from W to V cannot
be less than ..."

Pacific North West USA

Dijkstra

Divide vertices into 3 groups

= Yellow(n)
m Green(n)

Start with A = Yellow(0), everything else Red

Choose Yellow(n) vertex V with smallest n

m Make it Green(n)
= Tell its neighbours

Stop when B is Green

"Good" ones
are close to A
Not
hecessarily!

Dijkstra A™ search

= Divide vertices into 3 groups

= Yellow(n)
m Green(n)

= Start with A = Yellow(0), everything else Red

® Choose Yellow(n) vertex V with smallest (n+L(V))
m Make it Green(n)

" Tell its neighbours L(V) is a lower bound for

= Stop when B is Green shortest path V-B

"Good" node has smallest L(V)=0 gives
estimated complete path Dijkstra

Euclidean bounds

m (V) = Euclidean distance CrowFlies(V,B)

London @

Exact paths

Crow-flies
120 estimates

Birmingham woe ' Troon (near
Glasgow)

= Birmingham: 120+400 = 520
= Bristol: 100+550 = 650
= So work on Birmingham first (unlike Dijkstra)

Does A* still work?

Provided the lower bound estimate L(V) is
"sensible” (which CrowFlies is) then yes, A*
finds the exact shortest path

NOT OBVIOUS [prove it!]
“Sensible" iff
m | (B)=0 @ L(V) = 10

1
= Tt respects the triangle
inequality: L(V) < VW + L(w) [

Thm: if L is "sensible” then L(v) < SP(V,B)

ALAS!

Euclidean bounds do not work well for route-finding
in road maps

Why? Because motorways are like space warps!

Need CrowFlies(A,B) < SP(A,B), so the crow must fly
at the fastest motorway speed

Which means that CrowFlies(A,B) is small
Which is bad, bad, bad.

My

mother's Sto ry SO fa r

method

Does not work

Works, slowly g
Labelling R 4
Peter Hart 1940ish- Bert Raphael 1936-
* Faster, but not much
Dijkstra v
1959 A bit faster still
Bidirectional , ,
Dijkstra Still no cigar
A* with Nils Nilsson 1940ish-

Hart, Nilsson, Euclidean
Raphael 1968 bounds

Better lower bounds
®m Choose Yellow(n) vertex V with smallest (n+L(V))

Exact V-B = L(V) is less than the exact distance V-B
distance = nis the exact distance A-V
= n+L(V) is less than the exact distance A-B

Exact distance = n L(V) = lower
(= bound V-B
AQ) v OB

= L(V) =0 gives Dijkstra

= L(V) = exact distance V-B means we always pick precisely
the right vertex

= Bigger L(V) is better (provided always < exact distance)

Better lower bounds
®m Choose Yellow(n) vertex V with smallest (n+L(V))

Exact V-B
distance

Better lower bounds
®m Choose Yellow(n) vertex V with smallest (n+L(V))

Exact V-B
distance

«

Better lower bounds
®m Choose Yellow(n) vertex V with smallest (n+L(V))

Exact V-B
distance

Wanted: better lower bounds
" Tdead!

= Fix a few landmarks

= Pre-compute exact shortest paths SP(V.L) from
every vertex V to each landmark L

Exact Bristol
shortest 553

path length Glasgow

452
120 '

Birmingham

= Now lower bound Bristol-Troon
= 553 - 16 (triangle inequality again)

Wanted: better lower bounds
m Tdeadl

= Fix a few landmarks (eg a dozen or two)

® Pre-compute and store exact shortest paths
SP(V,L) from every vertex V to each landmark L

= Main point: the pre-computation takes
account of motorways

® Good lower bound if
m Destination is near the landmark
= Or the landmark is "beyond” destination

Landmark

Wanted: better lower bounds

® Good lower bound if
m Destination is near the landmark
® Or the landmark is "beyond” destination

= How do we find a landmark that is "beyond”
the destination? Just picking one may
sometimes be bad. So use severall

= Easy to use lots of landmarks at once:
m (V) =max(L,(V), L,(V), ... L(V))
® The max of a set of lower bounds is still a lower
bound

we're cooking

Much, much
better!

Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes ME | avgsc: maxscan

Bidirectional Dijkstra 28 | 518 72: 340.74

Average number Maximum number
of vertices of vertices
scanned scanned

30 times faster
4 times as much memory used

My

mother's Story SO far

method
Does not work

Works, slowly
Labelling
method

w Faster, but not much

Dijkstra v
1959 A bit faster still A* with
idi - landmarks
Bidirectional

Dijkstra Still no cigar
A* with

Hart, Nilsson, Euclidean
Raphael 1968 bounds

Goldberg, Harrelson 2005

Can we do betfter?

Emeryville]!

Treasure Island

|

praay. e

e
1 N
Qﬂ" S

= Intuition: no Foin’r in exploring Treasure Island
(at all) when finding path A-B

= Why not?
m Because No vertex in Treasure Island is

“on the way to anywhere else”

No vertex in Treasure Island is
RZGCh “on the way to anywhere else”

= What does it mean to say "V is on the way to
somewhere?”

= Obviously ® IS on the
way from - fo -|

" The "reach” of Vis

= big if V is on the way
between far-away places

= small if Vis only on the
way between nearby places

= "on the way" means
“on the shortest path”

Reach

® The "reach” of V is

= big if V is on the way Vertices with small
between fC(I"-ClWCly plC(CZS reach are not on the

= small if V is only on the way to anywhere
way between nearby places

= Small if all shortest paths involving V have
one end near V

= Reach(V) = max { min(SP(A,V), SP(V,B))
| A,.B are vertices, and
V is on shortest path A-B }

SP(A,V)=3 @ SP(V,B)=10

Pruning A™

m Choose Yellow(n) vertex V with smallest n+L(V),

unless Reach(V)<n and Reach(V)<L(V)

= Why?
= One end of any shortest path going through V
must be within Reach(V) of V [Céiefn of Reach]

m But if Reach(V) < n then A is not within
Reach(V) of V (since SP(A,V) = n)

m And if Reach(V) < L(V) then B is not within
Reach(V) of V (since L(V) < SP(V,B))

m So neither A nor B are within Reach(V) of V
® So the shortest path A-B cannot go through V

Those side alleys make a difference!

Results

Northwest (1.6M vertices), random queries, 16 landmarks.

preprocessing query
method minutes MB | avgscan maxscan

Bidirectional Dijkstra 28 | ! 23 1197607
ALT

Reach

Reach4-Short

Reach+Short+ALT

50x fewer vertices
than ALT

method

Dijkstra
ALT(16)
Reach

Reach+Short

Reach+Short4+ALT(16,1)

Reach+Short4ALT(64,16)

preprocessing
min KB

393
12.5 1597
impractical

648
57.7 1869

102.6 1037

avgscan

8984 289

82 348

query
maxscan

993015

8486

3387

2998

4 365.81

120.09

My

mother's T h e sto ry

method
Does not work

A* with

Works, slowly landmarks
Labelling and reach
method

Goldberg,
Kaplan, Werneck
2006

Dijkstra v
1959 A bit faster still A* with
idi - landmarks
Bidirectional

Dijkstra Still no cigar
A* with

Hart, Nilsson, Euclidean
Raphael 1968 bounds

* Faster, but not much

Goldberg, Harrelson 2005

Summary
A problem that spans 50+ years, still active today

ONE algorithm, with a variety of "choose the
next vertex to work on" heuristics

An ounce of cunning is worth a tonne of brute
force: fantastic gains from simple insights

Abstraction is the key:
= Boil away the detail to leave an abstract problem
= Clever algorithms underpinned by formal reasoning

Computer science is a lot more than programming!

