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 Well-known algorithms are fast enough on a 
reasonable computer but
 A handheld is not a “reasonable computer”

 Servers consume lots of energy (they are put 
next to hydro-electric power stations)

 The “well known” algorithms are Terribly 
Wasteful 

 The subject of this talk: can we do better?
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1. Put a VERTEX at every intersection

2. Put an EDGE between connected intersections

3. LABEL the edges with travel times 
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NB: long road, 
but fast, so 
short time

NB: short road, 
but slow, so 

long time



4. Now ignore the original map

5. Choose START and END points
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5. Choose START and END points

6. Find shortest path
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7. Draw on original map, following roads

8. Discard the vertices and edges



 Given a “edge-weighted un-directed graph”

 And any two points A and B

 Find the shortest path from A to B

 Length of shortest path = SP(A,B)
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 My mother: 
 Start at A 

 Drive around at random until you find B

 Slow, and even if she arrives, it definitely 
isn’t by the shortest route
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 Divide vertices V into 3 groups
 Red: V knows nothing
 Yellow(n): V knows something:

 the distance from A to V is no more than n
 Green(n): V knows something, and so do V’s neighbours:

 the distance from A to V is no more than n 
 V’s immediate neighbours know that fact

 Start with A = Yellow(0), everything else Red

 Choose any Yellow(n) vertex
 Make it Green(n)
 “Tell the neighbours”

 Stop when all are green

Starting at A
Destination is B



 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)
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A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Don’t 
increase 
me to 30!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that



 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W, 
change W as follows:

 Yellow or Red -> Yellow( n+k )

 Green(n): no change

V W
k
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Not 
shortest 

path!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Do not 
increase 
me from 
10 to 21!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that



 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W, 
change W as follows:

 Red -> Yellow( n+k )

 Yellow( m ) -> Yellow( n+k ), if n+k < m

 Green(n): no change

V W
k
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that
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Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Went 
from 

green to 
yellow!!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s 
neighbours know that



 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W, 
change W as follows:

 Red -> Yellow( n+k )

 Yellow( m ) -> Yellow( n+k ), if n+k < m

 Green( m ) -> Yellow( n+k ),   if n+k < m

V W
k

General rule: 
Vertex turns yellow when its n decreases

Think of Red as ∞



 Claim: when all vertices are green, every 
vertex knows its exact shortest path

 NOT OBVIOUS

 But true. [Exercise: prove it]



 Claim: when all vertices are green, every 
vertex knows its exact shortest path 
[Exercise: prove it]

 BUT this is stupid
 We may visit each vertex many times (because of 

Red -> Yellow -> Green -> Yellow -> Green -> Yellow)

 We must visit every vertex (eg examine all roads 
in Glasgow when finding a route from London to 
Reading)

Zillions of green 
vertices

1 1

2 2

A B



My 
mother’s 
method

Labelling
method

Does not work

Works, slowly



 Europe
 18M vertices

 43M edges

 Visiting all edges and vertices is no big deal

 But it is STILL stupid:
 Slow on a hand-held (seconds or minutes to re-

plan your route)

 Would you prefer a server farm with 500 
servers?  Or 5?



 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose any Yellow(n) vertex
 “Tell the neighbours”

 Make it Green(n)

 Stop when all are green

IDEA: 
Choose a 

good 
vertex!
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 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose any the Yellow(n) vertex with smallest n
 “Tell the neighbours”

 Make it Green(n)

 Stop when all are green

Choose a good 
one!

“Good” ones 
are close to A
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 Roughly speaking
 Take nearest yellow vertex
 Turn it green, and its more distant neighbours 

yellow

B



1. No vertex changes Green -> Yellow, so we 
visit each vertex at most once

2. Can stop when B becomes Green (rather 
than when all vertices become Green)

WHY?



 Dijkstra properties
 Yellow(n): shortest green-only path A to V is exactly n 

 Green(n): shortest path A to V is exactly n

A V

A “green-only path”



 Dijkstra properties
a. Yellow(n): shortest green-only path A to V is exactly n 

b. Green(n): shortest path A to V is exactly n

 True initially: A = Yellow(0)

 Choose the Yellow(n) vertex V with smallest n

 Make it Green(n): (b) remains true
 We know shortest green-only A-V path is n

 Any shorter A-V path must go GGGGY(m)....Y(n)

 Hence m<n, contradication!

 “Tell the neighbours”: makes (a) true again

A V



1. No vertex changes Green -> Yellow, so we 
visit each vertex at most once
 Because once Green, it has the right n, so n 

cannot decrease any more

2. Can stop when B becomes Green (rather 
than when all vertices become Green)
 Because Green vertices have exact shortest 

path.



Start

Stop

 Far, far too 
many roads 
explored!

Pacific North West USA



 Idea: start 
from both 
ends and 
work 
towards the 
middle

Pacific North West USA



 Idea: start 
from both 
ends and 
work 
towards the 
middle

 Better

 But still far 
too many 
roads 
explored

Pacific North West USA

Start

Stop



My 
mother’s 
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional 
Dijkstra

Faster, but not much

A bit faster still1959

Edsger Dijkstra 1930-2002



 Still far too 
many roads 
explored

 Why???

 Space warp!

Pacific North West USA

Start

Stop

2min
Idea

Exploit our knowledge 

of lower bounds
“The shortest path 
from W to V cannot 

be less than ....”

V

W



 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose Yellow(n) vertex V with smallest n
 Make it Green(n)

 Tell its neighbours

 Stop when B is Green

“Good” ones 
are close to A
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Not 
necessarily!



 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose Yellow(n) vertex V with smallest (n+L(V))
 Make it Green(n)

 Tell its neighbours

 Stop when B is Green

L(V) is a lower bound for 
shortest path V-B
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“Good” node has smallest 
estimated complete path

L(V)=0 gives 
Dijkstra



 L(V) = Euclidean distance CrowFlies(V,B)

 Birmingham: 120+400 = 520
 Bristol: 100+550 = 650
 So work on Birmingham first (unlike Dijkstra)

0

B

100

Exact paths

London Bristol

Troon (near 
Glasgow)

120

Birmingham

Crow-flies 
estimates

400

550



 Provided the lower bound estimate L(V) is 
“sensible” (which CrowFlies is) then yes, A* 
finds the exact shortest path

 NOT OBVIOUS [prove it!]

 “Sensible” iff
 L(B)=0

 It respects the triangle
inequality: L(V) ≤ VW + L(W) 

 Thm: if L is “sensible” then L(v) ≤ SP(V,B)

B

V

W

L(V) = 10

L(W) = 5

1

L(V) is not 
sensible



 Euclidean bounds do not work well for route-finding 
in road maps

 Why? Because motorways are like space warps! 

 Need CrowFlies(A,B) ≤ SP(A,B), so the crow must fly 
at the fastest motorway speed

 Which means that CrowFlies(A,B) is small

 Which is bad, bad, bad.



My 
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method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional 
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with 
Euclidean 
bounds

Hart, Nilsson, 
Raphael 1968

Still no cigar

Peter Hart 1940ish- Bert Raphael 1936-

Nils Nilsson 1940ish-



 Choose Yellow(n) vertex V with smallest (n+L(V))

A B

Exact distance = n L(V) = lower 
bound V-B

V

0

Exact V-B 
distance

L(V)

 L(V) = 0 gives Dijkstra
 L(V) = exact distance V-B means we always pick precisely 

the right vertex
 Bigger L(V) is better (provided always < exact distance)

 L(V) is less than the exact distance V-B
 n is the exact distance A-V
 n+L(V) is less than the exact distance A-B



 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B 
distance

L(V)

B

A



 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B 
distance

L(V)

B

A



 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B 
distance

L(V)

B

A



 Idea! 
 Fix a few landmarks
 Pre-compute exact shortest paths SP(V,L) from 

every vertex V to each landmark L

 Now lower bound Bristol-Troon
= 553 – 16 (triangle inequality again)

B

100
Bristol

Glasgow

120

Birmingham

553

Troon

452

16

Landmark

Exact 
shortest 

path length



 Idea! 
 Fix a few landmarks (eg a dozen or two)

 Pre-compute and store exact shortest paths 
SP(V,L) from every vertex V to each landmark L

 Main point: the pre-computation takes 
account of motorways

 Good lower bound if
 Destination is near the landmark

 Or the landmark is “beyond” destination

B

120
Landmark



 Good lower bound if
 Destination is near the landmark

 Or the landmark is “beyond” destination

 How do we find a landmark that is “beyond” 
the destination?  Just picking one may 
sometimes be bad.  So use several!

 Easy to use lots of landmarks at once:
 L(V) = max( L1(V), L2(V), ..., Ln(V) )

 The max of a set of lower bounds is still a lower 
bound



Pacific North West USA

Much, much 
better!

Start

Stop



Average number 
of vertices 

scanned

Maximum number 
of vertices 

scanned
Landmarks

30 times faster
4 times as much memory used
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 Intuition: no point in exploring Treasure Island 
(at all) when finding path A-B

 Why not?

 Because

A

B

Treasure Island

No vertex in Treasure Island is
“on the way to anywhere else”



 What does it mean to say “V is on the way to 
somewhere?”

 Obviously   IS on the
way from    to    !

 The “reach” of V is
 big if V is on the way

between far-away places
 small if V is only on the

way between nearby places

 “on the way” means
“on the shortest path”

No vertex in Treasure Island is
“on the way to anywhere else”



 The “reach” of V is
 big if V is on the way

between far-away places
 small if V is only on the

way between nearby places

 Small if all shortest paths involving V have 
one end near V

 Reach(V) = max { min(SP(A,V), SP(V,B))
| A,B are vertices, and
V is on shortest path A-B } 

A B
V

SP(V,B)=10SP(A,V)=3

Vertices with small 
reach are not on the 

way to anywhere



 Choose Yellow(n) vertex V with smallest n+L(V),
unless  Reach(V)<n  and  Reach(V)<L(V)

 Why?
 One end of any shortest path going through V 

must be within Reach(V) of V [defn of Reach]

 But if Reach(V) ‹ n then A is not within 
Reach(V) of V (since SP(A,V) = n)

 And if Reach(V) ‹ L(V) then B is not within 
Reach(V) of V (since L(V) ≤ SP(V,B) )

 So neither A nor B are within Reach(V) of V

 So the shortest path A-B cannot go through V



Start

Stop

ALT (A* + landmarks)

A* + landmarks + Reach



50x fewer vertices 
than ALT

20x faster
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 A problem that spans 50+ years, still active today

 ONE algorithm, with a variety of “choose the 
next vertex to work on” heuristics

 An ounce of cunning is worth a tonne of brute 
force: fantastic gains from simple insights

 Abstraction is the key: 
 Boil away the detail to leave an abstract problem

 Clever algorithms underpinned by formal reasoning

 Computer science is a lot more than programming!


