
Simon Peyton Jones (giving the talk)

Andrew Goldberg (who did all the work)

Microsoft Research

 Well-known algorithms are fast enough on a
reasonable computer but
 A handheld is not a “reasonable computer”

 Servers consume lots of energy (they are put
next to hydro-electric power stations)

 The “well known” algorithms are Terribly
Wasteful

 The subject of this talk: can we do better?

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Still no cigar

A* with
landmarks

Goldberg, Harrelson 2005

A* with
landmarks
and reach

Goldberg,
Kaplan, Werneck
2006

Hart, Nilsson,
Raphael 1968

Andrew Goldberg
MSR Silicon Valley

1. Put a VERTEX at every intersection

2. Put an EDGE between connected intersections

3. LABEL the edges with travel times

10

152

3

88

7

4 1

1

4

NB: long road,
but fast, so
short time

NB: short road,
but slow, so

long time

4. Now ignore the original map

5. Choose START and END points

10

152

3

88

7

4 1

1

4

10

152

3

88

7

4 1

1

4

5. Choose START and END points

6. Find shortest path

10

152

3

88

7

4 1

1

4

7. Draw on original map, following roads

8. Discard the vertices and edges

 Given a “edge-weighted un-directed graph”

 And any two points A and B

 Find the shortest path from A to B

 Length of shortest path = SP(A,B)

10

152

3

88

7

4 1

1

4

A
B

 My mother:
 Start at A

 Drive around at random until you find B

 Slow, and even if she arrives, it definitely
isn’t by the shortest route

10

152

3

88

7

4
1

1

4

 Divide vertices V into 3 groups
 Red: V knows nothing
 Yellow(n): V knows something:

 the distance from A to V is no more than n
 Green(n): V knows something, and so do V’s neighbours:

 the distance from A to V is no more than n
 V’s immediate neighbours know that fact

 Start with A = Yellow(0), everything else Red

 Choose any Yellow(n) vertex
 Make it Green(n)
 “Tell the neighbours”

 Stop when all are green

Starting at A
Destination is B

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15

2

3

88

7

4

0

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

10

15

2

3

88

7

4
10

0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4
10

17
0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Don’t
increase
me to 30!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W,
change W as follows:

 Yellow or Red -> Yellow(n+k)

 Green(n): no change

V W
k

10

15
2

3

88

7

4
10

17
0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4
10

20

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Not
shortest

path!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4 24
10

20

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Do not
increase
me from
10 to 21!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W,
change W as follows:

 Red -> Yellow(n+k)

 Yellow(m) -> Yellow(n+k), if n+k < m

 Green(n): no change

V W
k

10

15
2

3

88

7

4 24
10

20

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

10

15
2

3

88

7

4 11
10

11

1725 0

15

1

1

4

A
B

Choose a Yellow(n) vertex
• “Tell the neighbours”
• Make it Green(n)

Went
from

green to
yellow!!

 Red: V knows nothing

 Yellow(n): SP(A,V) ≤ n

 Green(n): SP(A,V) ≤ n, and V’s
neighbours know that

 When we turn V to Green(n)

 Tell the neighbours: for each neighbour W,
change W as follows:

 Red -> Yellow(n+k)

 Yellow(m) -> Yellow(n+k), if n+k < m

 Green(m) -> Yellow(n+k), if n+k < m

V W
k

General rule:
Vertex turns yellow when its n decreases

Think of Red as ∞

 Claim: when all vertices are green, every
vertex knows its exact shortest path

 NOT OBVIOUS

 But true. [Exercise: prove it]

 Claim: when all vertices are green, every
vertex knows its exact shortest path
[Exercise: prove it]

 BUT this is stupid
 We may visit each vertex many times (because of

Red -> Yellow -> Green -> Yellow -> Green -> Yellow)

 We must visit every vertex (eg examine all roads
in Glasgow when finding a route from London to
Reading)

Zillions of green
vertices

1 1

2 2

A B

My
mother’s
method

Labelling
method

Does not work

Works, slowly

 Europe
 18M vertices

 43M edges

 Visiting all edges and vertices is no big deal

 But it is STILL stupid:
 Slow on a hand-held (seconds or minutes to re-

plan your route)

 Would you prefer a server farm with 500
servers? Or 5?

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose any Yellow(n) vertex
 “Tell the neighbours”

 Make it Green(n)

 Stop when all are green

IDEA:
Choose a

good
vertex!

10

17

0

15

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose any the Yellow(n) vertex with smallest n
 “Tell the neighbours”

 Make it Green(n)

 Stop when all are green

Choose a good
one!

“Good” ones
are close to A

10

17

0

15

 Roughly speaking
 Take nearest yellow vertex
 Turn it green, and its more distant neighbours

yellow

B

1. No vertex changes Green -> Yellow, so we
visit each vertex at most once

2. Can stop when B becomes Green (rather
than when all vertices become Green)

WHY?

 Dijkstra properties
 Yellow(n): shortest green-only path A to V is exactly n

 Green(n): shortest path A to V is exactly n

A V

A “green-only path”

 Dijkstra properties
a. Yellow(n): shortest green-only path A to V is exactly n

b. Green(n): shortest path A to V is exactly n

 True initially: A = Yellow(0)

 Choose the Yellow(n) vertex V with smallest n

 Make it Green(n): (b) remains true
 We know shortest green-only A-V path is n

 Any shorter A-V path must go GGGGY(m)....Y(n)

 Hence m<n, contradication!

 “Tell the neighbours”: makes (a) true again

A V

1. No vertex changes Green -> Yellow, so we
visit each vertex at most once
 Because once Green, it has the right n, so n

cannot decrease any more

2. Can stop when B becomes Green (rather
than when all vertices become Green)
 Because Green vertices have exact shortest

path.

Start

Stop

 Far, far too
many roads
explored!

Pacific North West USA

 Idea: start
from both
ends and
work
towards the
middle

Pacific North West USA

 Idea: start
from both
ends and
work
towards the
middle

 Better

 But still far
too many
roads
explored

Pacific North West USA

Start

Stop

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still1959

Edsger Dijkstra 1930-2002

 Still far too
many roads
explored

 Why???

 Space warp!

Pacific North West USA

Start

Stop

2min
Idea

Exploit our knowledge

of lower bounds
“The shortest path
from W to V cannot

be less than”

V

W

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose Yellow(n) vertex V with smallest n
 Make it Green(n)

 Tell its neighbours

 Stop when B is Green

“Good” ones
are close to A

10

152

3

88

7

4
1

1

4

Not
necessarily!

 Divide vertices into 3 groups
 Red

 Yellow(n)

 Green(n)

 Start with A = Yellow(0), everything else Red

 Choose Yellow(n) vertex V with smallest (n+L(V))
 Make it Green(n)

 Tell its neighbours

 Stop when B is Green

L(V) is a lower bound for
shortest path V-B

10

152

3

88

7

4
1

1

4

“Good” node has smallest
estimated complete path

L(V)=0 gives
Dijkstra

 L(V) = Euclidean distance CrowFlies(V,B)

 Birmingham: 120+400 = 520
 Bristol: 100+550 = 650
 So work on Birmingham first (unlike Dijkstra)

0

B

100

Exact paths

London Bristol

Troon (near
Glasgow)

120

Birmingham

Crow-flies
estimates

400

550

 Provided the lower bound estimate L(V) is
“sensible” (which CrowFlies is) then yes, A*
finds the exact shortest path

 NOT OBVIOUS [prove it!]

 “Sensible” iff
 L(B)=0

 It respects the triangle
inequality: L(V) ≤ VW + L(W)

 Thm: if L is “sensible” then L(v) ≤ SP(V,B)

B

V

W

L(V) = 10

L(W) = 5

1

L(V) is not
sensible

 Euclidean bounds do not work well for route-finding
in road maps

 Why? Because motorways are like space warps!

 Need CrowFlies(A,B) ≤ SP(A,B), so the crow must fly
at the fastest motorway speed

 Which means that CrowFlies(A,B) is small

 Which is bad, bad, bad.

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Hart, Nilsson,
Raphael 1968

Still no cigar

Peter Hart 1940ish- Bert Raphael 1936-

Nils Nilsson 1940ish-

 Choose Yellow(n) vertex V with smallest (n+L(V))

A B

Exact distance = n L(V) = lower
bound V-B

V

0

Exact V-B
distance

L(V)

 L(V) = 0 gives Dijkstra
 L(V) = exact distance V-B means we always pick precisely

the right vertex
 Bigger L(V) is better (provided always < exact distance)

 L(V) is less than the exact distance V-B
 n is the exact distance A-V
 n+L(V) is less than the exact distance A-B

 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B
distance

L(V)

B

A

 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B
distance

L(V)

B

A

 Choose Yellow(n) vertex V with smallest (n+L(V))

0

Exact V-B
distance

L(V)

B

A

 Idea!
 Fix a few landmarks
 Pre-compute exact shortest paths SP(V,L) from

every vertex V to each landmark L

 Now lower bound Bristol-Troon
= 553 – 16 (triangle inequality again)

B

100
Bristol

Glasgow

120

Birmingham

553

Troon

452

16

Landmark

Exact
shortest

path length

 Idea!
 Fix a few landmarks (eg a dozen or two)

 Pre-compute and store exact shortest paths
SP(V,L) from every vertex V to each landmark L

 Main point: the pre-computation takes
account of motorways

 Good lower bound if
 Destination is near the landmark

 Or the landmark is “beyond” destination

B

120
Landmark

 Good lower bound if
 Destination is near the landmark

 Or the landmark is “beyond” destination

 How do we find a landmark that is “beyond”
the destination? Just picking one may
sometimes be bad. So use several!

 Easy to use lots of landmarks at once:
 L(V) = max(L1(V), L2(V), ..., Ln(V))

 The max of a set of lower bounds is still a lower
bound

Pacific North West USA

Much, much
better!

Start

Stop

Average number
of vertices

scanned

Maximum number
of vertices

scanned
Landmarks

30 times faster
4 times as much memory used

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Still no cigar

A* with
landmarks

Goldberg, Harrelson 2005

Hart, Nilsson,
Raphael 1968

 Intuition: no point in exploring Treasure Island
(at all) when finding path A-B

 Why not?

 Because

A

B

Treasure Island

No vertex in Treasure Island is
“on the way to anywhere else”

 What does it mean to say “V is on the way to
somewhere?”

 Obviously IS on the
way from to !

 The “reach” of V is
 big if V is on the way

between far-away places
 small if V is only on the

way between nearby places

 “on the way” means
“on the shortest path”

No vertex in Treasure Island is
“on the way to anywhere else”

 The “reach” of V is
 big if V is on the way

between far-away places
 small if V is only on the

way between nearby places

 Small if all shortest paths involving V have
one end near V

 Reach(V) = max { min(SP(A,V), SP(V,B))
| A,B are vertices, and
V is on shortest path A-B }

A B
V

SP(V,B)=10SP(A,V)=3

Vertices with small
reach are not on the

way to anywhere

 Choose Yellow(n) vertex V with smallest n+L(V),
unless Reach(V)<n and Reach(V)<L(V)

 Why?
 One end of any shortest path going through V

must be within Reach(V) of V [defn of Reach]

 But if Reach(V) ‹ n then A is not within
Reach(V) of V (since SP(A,V) = n)

 And if Reach(V) ‹ L(V) then B is not within
Reach(V) of V (since L(V) ≤ SP(V,B))

 So neither A nor B are within Reach(V) of V

 So the shortest path A-B cannot go through V

Start

Stop

ALT (A* + landmarks)

A* + landmarks + Reach

50x fewer vertices
than ALT

20x faster

My
mother’s
method

Labelling
method

Does not work

Works, slowly

Dijkstra

Bidirectional
Dijkstra

Faster, but not much

A bit faster still
Dijkstra

1959

A* with
Euclidean
bounds

Still no cigar

A* with
landmarks

Goldberg, Harrelson 2005

A* with
landmarks
and reach

Goldberg,
Kaplan, Werneck
2006

Hart, Nilsson,
Raphael 1968

 A problem that spans 50+ years, still active today

 ONE algorithm, with a variety of “choose the
next vertex to work on” heuristics

 An ounce of cunning is worth a tonne of brute
force: fantastic gains from simple insights

 Abstraction is the key:
 Boil away the detail to leave an abstract problem

 Clever algorithms underpinned by formal reasoning

 Computer science is a lot more than programming!

