
Diss. ETH No. 18871

Complexity Classes of

Finite Automata

A dissertation submitted to the

Swiss Federal Institute of Technology (ETH)
Zürich

for the degree of

Doctor of Sciences

presented by

Richard Královič

Mgr., Comenius University Bratislava

born on 7 September 1980

citizen of Slovakia

accepted on the recommendation of

Prof. Dr. Juraj Hromkovič, examiner

Prof. Dr. Georg Schnitger, co-examiner

Prof. Dr. Peter Widmayer, co-examiner

2010

ii

Abstract

In this thesis, we present a complexity theory of finite automata in an analogous
way to the well-known complexity theory of Turing machines. While most models
of finite automata have equivalent computational power, there are large differences
in their descriptional complexity. We provide a comprehensive overview of known
results regarding the state complexity of finite automata and we use these results to
build a hierarchy of the corresponding complexity classes.

The main motivation for the complexity theory of finite automata is to obtain a
deeper understanding of the relationship between determinism, nondeterminism, and
randomization. Indeed, while questions of such kind are usually very hard to answer
in the scope of Turing machines, similar questions are often feasible to solve in simpler
computational models such as finite automata.

At first, we focus on non-randomized models of finite automata. Here, we analyze
determinism, nondeterminism, and self-verifying nondeterminism in connection with
one-way, rotating, sweeping, and two-way automata. Apart from collecting previ-
ously known results into a unifying framework, we prove an exponential gap in state
complexity between determinism and self-verifying nondeterminism for rotating and
sweeping automata. To do so, we use the technique of hardness propagation, which
allows us to prove separation results for state complexity classes in a systematic way.

The main focus of this thesis is the analysis of randomized models of finite au-
tomata. Here, many results can be obtained by relating the power of the randomized
models to the non-randomized ones. Furthermore, several interesting facts about
the relationship between different randomized models can be obtained by adapting
corresponding results from communication complexity.

Our main contribution is the analysis of the relationship between randomized
sweeping automata running in linear and in exponential expected time. While bound-
ed-error sweeping automata are very powerful if their running time is not restricted
(they can accept even non-regular languages), restricting their running time to be
linear causes a significant decrease in their computational power. More precisely,
we prove that even LasVegas sweeping automata (i. e., sweeping automata using
the weakest form of randomization with zero probability of error) can be exponen-
tially more succinct than bounded-error sweeping automata restricted to linear time.
To prove our results, we adapt the hardness propagation lemmas used in the non-
randomized case to randomized models.

iii

iv

To sum up, we show that it is possible to build a nontrivial complexity theory even
for a very simple computational model such as finite automata. In such a way, we can
learn more about the relationship between determinism, nondeterminism, and various
models of randomization. Furthermore, there are several interesting open problems
remaining.

Zusammenfassung

In dieser Arbeit stellen wir eine Komplexitätstheorie endlicher Automaten analog zu
der bekannten Komplexitätstheorie der Turingmaschinen vor. Obwohl die meisten
Modelle endlicher Automaten dieselbe Berechnungsstärke besitzen, gibt es grosse Un-
terschiede in ihrer Beschreibungskomplexität. Wir geben einen Überblick der bekann-
ten Ergebnisse bezüglich der Zustandskomplexität endlicher Automaten und benutzen
diese Resultate dann, um eine Hierarchie der zugehörigen Komplexitätsklassen auf-
zubauen.

Die Hauptmotivation für eine Komplexitätstheorie endlicher Automaten ist es,
ein tiefergehendes Verständnis der Beziehungen zwischen Determinismus, Nichtdeter-
minismus und Randomisierung zu erlangen. Obwohl derartige Fragen im Bezug auf
Turingmaschinen in der Regel sehr schwer zu beantworten sind, fällt dies in einfache-
ren Berechnungsmodellen, wie bei den endlichen Automaten, oftmals leichter.

Zunächst betrachten wir nicht-randomisierte Modelle endlicher Automaten. Hierzu
untersuchen wir Determinismus, Nichtdeterminismus und selbstverifizierenden Nicht-
determinismus in Verbindung mit Einweg-, Rotating-, Sweeping- und Zweiweg-Auto-
maten. Zusätzlich zur Einordnung bereits bekannter Ergebnisse in einen einheitlichen
Rahmen beweisen wir eine exponentielle Lücke bezüglich der Zustandskomplexität
zwischen Determinismus und selbstverifizierendem Nichtdeterminismus für Rotating-
und Sweeping-Automaten. Um dies zu tun, bedienen wir uns der Technik der Hardness
Propagation, die es uns ermöglicht, Separationsergebnisse systematisch zu beweisen.

Der Schwerpunkt dieser Arbeit liegt auf der Analyse randomisierter Modelle end-
licher Automaten. Viele Ergebnisse erhalten wir dadurch, dass wir die Mächtigkeit
randomisierter Modelle mit der nicht-randomisierter Modelle in Beziehung setzen.
Desweiteren können viele interessante Tatsachen über die Beziehungen zwischen ver-
schiedenen randomisierten Modellen aus Ergebnissen der Kommunikationskomple-
xität abgeleitet werden.

Der Hauptbeitrag dieser Arbeit ist die Analyse der Beziehungen zwischen rando-
misierten Sweeping-Automaten mit linearer Laufzeit und solchen mit exponentieller
Laufzeit. Obwohl Sweeping-Automaten mit beschränktem Fehler sehr mächtig sind,
wenn ihre Laufzeit nicht begrenzt ist (in diesem Fall können sie sogar nicht-reguläre
Sprachen akzeptieren), wird ihre Berechnungsstärke stark verringert, wenn sie nur
eine lineare Laufzeit besitzen dürfen. Wir beweisen, dass sogar LasVegas-Sweeping-
Automaten (also Sweeping-Automaten, die nur die schwächste Form der Randomi-

v

vi

sierung mit einer Fehlerwahrscheinlichkeit von Null nutzen) exponentiell kleiner sind
als Sweeping-Automaten mit beschränktem Fehler, wenn deren Laufzeit linear be-
grenzt ist. Um dies zu beweisen, wenden wir Lemmata, die wir schon zur Hardness
Propagation im nicht-randomisierten Fall benutzt haben, auf randomisierte Modelle
an.

Zusammengefasst zeigen wir, dass es möglich ist, selbst für einfache Berechnungs-
modelle wie endliche Automaten eine nicht-triviale Komplexitätstheorie zu konstru-
ieren. Hierdurch können wir vieles über die Beziehungen zwischen Determinismus,
Nichtdeterminismus und verschiedenen Modellen der Randomisierung lernen. Des-
weiteren wirft dies viele interessante bislang unbeantwortete Fragen auf.

Contents

1 Introduction 1
1.1 Models of Finite Automata . 6

1.1.1 Deterministic Two-Way Finite Automata 6
1.1.2 Deterministic Sweeping Finite Automata 7
1.1.3 Deterministic Rotating Finite Automata 8
1.1.4 Deterministic One-Way Finite Automata 8
1.1.5 Nondeterministic Finite Automata 9

1.2 Complexity Classes . 10
1.2.1 Self-Verifying Complexity Classes 12

1.3 Known Results . 14

2 Determinism vs. Nondeterminism 19
2.1 Language Operators . 20
2.2 Parallel Automata . 21
2.3 Hardness Propagation . 24

2.3.1 Confusing Strings . 24
2.3.2 Generic Strings . 28

2.4 Map of the Complexity Classes . 33
2.4.1 Positive Closure Properties . 34
2.4.2 Collapsing Classes . 37
2.4.3 Separating Classes . 38
2.4.4 Negative Closure Properties . 41

2.5 Parallel Automata Classes . 42

3 Randomization 45
3.1 Randomized Models . 47

3.1.1 Monte-Carlo Automata with Two-Sided Error 47
3.1.2 Monte-Carlo Automata with One-Sided Error 51
3.1.3 LasVegas Automata . 52

3.2 Results for Unrestricted Running Time 54
3.2.1 Rotating, Sweeping, and Two-Way Automata 54
3.2.2 One-Way Randomized Automata 57

vii

viii CONTENTS

3.3 Lower Bounds on 1p1fas . 63
3.4 Rotating Automata with Linear Running Time 68

3.4.1 Upper Level of Hardness Propagation: Intuition 71
3.4.2 Upper Level of Hardness Propagation: Formal Proof 76

3.5 Sweeping Automata with Linear Running Time 90
3.5.1 Lower Level of Hardness Propagation 91
3.5.2 Upper Level of Hardness Propagation 92

4 Conclusion 101
4.1 Open Problems . 102

Bibliography 107

List of Figures

1.1 Computation of a rotating and sweeping automaton. 9
1.2 Computation of a one-way automaton. 9
1.3 Models of finite automata. 10
1.4 Basic complexity classes of finite automata. 13
1.5 Known relationships between complexity classes of finite automata . . 16

2.1 Complexity classes of finite automata: parallel automata classes. . . . 23
2.2 lviews and lmap. 29
2.3 The structure of the hardness propagation lemmas. 33
2.4 Closure properties. 33
2.5 Complexity classes of finite automata. 38
2.6 Complexity classes of finite automata: zoom to parallel automata. . . 39
2.7 Separations of the complexity classes. 39
2.8 Separations of the complexity classes, all relationships. 41

3.1 Map of the complexity classes of rotating, sweeping, and two-way ran-
domized automata. 58

3.2 Map of the complexity classes of one-way randomized automata. . . . 59
3.3 The idea of generic strings for randomized automata. 71
3.4 The use of generic strings for randomized automata. 73
3.5 Convex coordinates. 74

ix

x LIST OF FIGURES

Chapter 1

Introduction

A considerable part of the computer science is devoted to the analysis of the power of
different computational models. Since the advent of computer science, many different
abstract models of machines have been proposed and analyzed, many of them differ-
ing in their computational power. On one side of this spectrum, there are the very
powerful Turing machines, together with other equivalently powerful models, such
as register machines, phrase grammars, lambda calculus, and two-counter automata.
Naturally, it has been asked how the computational power changes with introduc-
ing certain restrictions to the computational model. In this direction, models such
as linear-bounded automata (equivalent to context-sensitive grammars), push-down
automata (equivalent to context-free grammars), and finite automata (equivalent to
regular grammars) have been analyzed and shown to be different – this result is widely
known as the the Chomsky hierarchy.

Computational models are often viewed as some kind of machines that are given
some input instance (sometimes called input word) and are supposed to decide if this
instance belongs to the considered problem (also called language). It is possible to
use also different frameworks, e. g. the more general model where the machine is able
to give arbitrary output. Nevertheless, restricting to the decision problems usually
does not cause significant loss of generality.

Most computational models can be defined in several variants. For example, any
model of automata or Turing machines can be considered in the deterministic or in
the nondeterministic setting. In the former case, the computation of the automaton
is uniquely defined for each input word. In the latter case, however, the automaton
is allowed to make nondeterministic guesses during the computation; the input word
is accepted if there exists at least one computation that accepts it. Hence, the non-
deterministic setting can be viewed as a scenario where the automaton is given some
(maybe bogus) “proof” that the input instance belongs to the recognized problem,
and this proof has to be verified.

Since every deterministic automaton can be viewed as a special case of a nonde-
terministic automaton of the same type, it is obvious that deterministic computations

1

2 Chapter 1. Introduction

cannot be more powerful than nondeterministic ones. A natural question is whether
there is a difference in computation power of determinism and nondeterminism. For
several models, the answer is known. For example, there is no difference in the
computational power of determinism and nondeterminism in Turing machines and
in finite automata, but deterministic push-down automata are strictly weaker than
nondeterministic ones [GG66]. For linear bounded automata, however, the relation-
ship between determinism and nondeterminism is a long-standing open problem (see
e. g. [Mon81,HH73]).

Apart from determinism and nondeterminism, several other variants of compu-
tation, such as randomized, alternating, and quantum computational models, have
been widely studied. Randomized machines can use some external source of ran-
domness to make their decisions. Hence, there are many possible computations (as
in nondeterminism), but probability of any computation is uniquely defined by the
behavior of the automaton. There are, however, several possible ways how to de-
fine the language accepted by a randomized machine. In the most general setting,
the language recognized by the machine consists of all words that are accepted with
probability at least p for some fixed constant 0 ≤ p ≤ 1; every word that is accepted
with probability less than p is said to be rejected by the machine. This model is called
as a randomized computation with non-isolated cut-point p (see e. g. [Rab63]). Such
model of randomized computations can be very powerful, but it does not guarantee
an efficient way of computing the result: Since the probability of acceptance of some
word in the recognized language and the probability of acceptance of some word not
in the language can be arbitrarily close, there is no efficient way how to obtain an
answer that is correct with reasonable high probability.

It is not difficult to see that the value of p is not very important: Indeed, for
most computation models it holds that any machine M with cut-point p can be easily
transformed into machine M ′ with cut-point p′, for any 0 < p < 1 and 0 < p′ < 1
(see, e. g., [MPP01, Paz71]). For example, if p′ < p, then M ′ will immediately reject
the input with probability p−p′

p , otherwise (i. e., with probability 1 − p−p′

p) machine
M ′ simulates M . Hence, M ′ accepts any word in the language recognized by M with
probability at least (

1− p− p′

p

)
p = p′,

and, by similar argumentation, accepts any word not in the language with probability
at most p′. For this reason, randomized computations are sometimes defined with
cut-point 1/2 only and are called as randomized computations with unbounded error.1

The drawback of computations with non-isolated cut-points is addressed in the
model of bounded-error randomized computations. Here, it is required that every

1Sometimes the randomized machines are defined in such a way that only rational probabilities
can be generated, or, (equivalently) only fair-coin flips can be used. In this case, the equivalence
between arbitrary cut-point and cut-point 1/2 does not always hold (as claimed in [Rab63] for the
case of finite automata), or is nontrivial to prove (as shown in [Wat99] for the case of space-bounded
randomized Turing machines).

3

word is either accepted with probability at least p+ ε or at most p− ε, for 0 ≤ p ≤ 1
and some fixed ε > 0; this model of randomized computation is also called as the
model with isolated cut-point p (introduced in [Rab63]).

Bounded-error randomized machines can still err in both sides (i. e., accepting
some word not in the recognized language or rejecting some word in the language
with with non-zero probability). We have, however, a fixed constant ε that isolates
the probabilities of these two cases. Hence, we can efficiently compute the correct
answer with high probability by using the method of amplification (see e. g. [Hro05]).
In particular, we can run several independent computations on the same input word
and let the machine “vote” if the word should be accepted or rejected, i. e., we just take
the result that occurred more often. Furthermore, the probability of error decreases
exponentially in the number of computations done. Hence, the amplification technique
allows us to compute the correct answer with arbitrarily high probability, just by
repeating the computation a constant number of times; this constant depends on
the parameter ε of the bounded-error automaton. For this reason, the exact value
of ε is usually2 not interesting, and bounded-error automata are sometimes defined
with p = 1/2 and ε = 1/6, i. e., they are required to accept every word either with
probability at least 2/3 or at most 1/3.

Since bounded-error machines can make errors on both sides, it is not trivial to
compare them with nondeterminism. Indeed, their relationship to nondeterministic
machines is different for various models. E. g., in case of Turing machines, nonde-
terminism and bounded-error randomization have the same computational power,
but bounded-error two-way finite automata are more powerful than nondeterministic
two-way finite automata.

Another widely considered model of randomized computations is model with
bounded one-sided error, usually called one-sided error Monte-Carlo randomization.
This model is, in fact, a restriction of nondeterminism: A Monte-Carlo machine with
one-sided error is required to accept every word either with probability at least ε (for
some fixed ε > 0), or with probability zero. Hence, any one-sided error Monte-Carlo
machine can be simulated by a corresponding nondeterministic machine in a straight-
forward way – every randomized decision (that occurs with non-zero probability) is
replaced by a nondeterministic one.

Every time a Monte-Carlo machine with bounded one-sided error accepts the in-
put word, it is guaranteed that this word is in the recognized language. Since the
probability of error on any word that is in the recognized language is bounded by a
fixed constant 1− ε, it is possible to use the amplification technique to make the er-
ror probability arbitrary small. This indicates that, similarly to the case of two-sided
bounded-error machines, the exact value of ε is usually not important; one-sided error
Monte-Carlo machines are sometimes defined with fixed value ε := 1/2.

2There are computation models (e. g. one-way finite automata) that are not capable of repeating
the computation. Here, the amplification technique cannot be used in the straightforward way.
Nevertheless, it still may be possible to apply the amplification technique by parallel simulation of
the computations.

4 Chapter 1. Introduction

It is possible to restrict the model of randomized computations even more. The
weakest model of randomized computations, called LasVegas (a name introduced in
[Bab79]) or zero probability of error, imposes very strict constraints on the randomized
machine: The answer provided by the machine has to be always correct. On the other
hand, the machine is allowed to not provide any answer (e. g. by outputting special “I
do not know” message) with probability bounded by a fixed constant ε < 1. Again,
the model is sometimes defined for fixed ε = 1/2, as the amplification technique allows
to efficiently decrease the probability of error below 1/2 for most computation models.

Essentially, any computation model can be viewed as some computational device
that is using certain resources. E. g., for Turing machines, we can measure the number
of tape cells used during the computation or the total number of computation steps
performed. In this way, we can define the space and time complexity of Turing
machines. Another possible complexity measure is the amount of information needed
to describe the computational device, what leads to the definition of the descriptional
complexity. Analogously, these complexity measures can be applied to other models
of computation as well.

In general, we can ask which problems are solvable by certain computational model
within some restrictions on its resources. In this way, we can define several different
complexity classes for one given computational model. The study of the relationship
between different complexity classes is of crucial importance for computer science,
and the most prominent open problems belong to this area. For example, the famous
p vs. np problem asks about the relationship of deterministic and nondeterministic
Turing machines restricted to polynomial running time. This problem has far reaching
consequences: Problems in p, i. e., those problems that are solvable by deterministic
Turing machines running in polynomial time, are considered efficiently solvable, but
many real-world problems are known to be np-hard (i. e., problems that any problem
in np can be reduced to in polynomial deterministic time). Hence, disproving p = np
would show that these hard problems are not efficiently solvable by deterministic
algorithms.

The relationship between randomized and non-randomized classes of Turing ma-
chines is probably even more relevant. For example, the class bpp, defined as the class
of problems solvable by bounded-error Turing machines restricted to polynomial run-
ning time, is considered to be the largest class of efficiently solvable problems. Thus,
proving that bpp = np would show that all problems in np are efficiently solvable; on
the other hand, proof of bpp 6= np would suggest that there is no efficient solution
for any np-hard problem.

Another well known open problem concerns the power of LasVegas Turing ma-
chines. An interesting open problem (introduced in [Gil77]), is the relationship be-
tween the class zpp, i. e., the class of problems solvable by LasVegas Turing machines
with polynomial running time, and the class p. While it is known that space com-
plexity classes of LasVegas Turing machines are equal to the corresponding classes
of nondeterministic Turing machines (as proven in [MS99]), there are no indices sug-
gesting that this is the case for restricted running time. Proving that zpp = p would

5

show that randomized computations with zero probability of error do not add any
extra power for Turing machines with polynomial running time.

Unfortunately, proving these relationship between complexity classes of Turing
machines seems to be extremely hard. Hence, to obtain better understanding of the
relative power of determinism, nondeterminism, and randomization, it is necessary to
focus on simpler computational models, where the problems are much more tractable.
In our work, we focus on various variants of finite automata.

Since for most variants of finite automata superlinear time does not add any power,
our main attention is on the measure of state complexity, which is closely related to
the descriptional complexity. Furthermore, the state complexity of finite automata
can be viewed as an analogy to the space complexity of Turing machines.

In Section 1.1 and Section 1.2, we formally define several variants of finite au-
tomata, as well as the complexity classes induced by their state complexity. Since we
will not deal with randomized models and time complexity classes of finite automata
until Chapter 3, we postpone their definitions until then. In Section 1.3, we present a
short summary of previous work related to the complexity analysis of finite automata.

Chapter 2 is devoted to the study of the relationship between various non-random-
ized complexity classes of finite automata, i. e., classes related to determinism and
nondeterminism. Up to know, most of the work has been focused on investigating
the relationship between two-way deterministic and nondeterministic finite automata.
Other variants of finite automata have been examined only as intermediate steps.
Hence, our study of these automata has been rather fragmentary. In Chapter 2,
we take the time to have focus on the relationship between the numerous variants of
finite automata itself. We introduce a list of language operators and study the closure
properties of the analyzed complexity classes with respect to these operators. We
introduce a technique of hardness propagation, a general framework for proving lower
bounds on the size of finite automata. This technique allows us to use the language
operators to build hard languages for more powerful automata classes out of a simple,
minimally hard, ‘core’ family. This way, we can find witnesses for previously known
complexity class separations in a systematic way. Moreover, we use these technique
to show a hierarchy between the analyzed complexity classes of finite automata. For
most of the classes, our results yield a complete characterization of their relationship
to other classes.

We deal with randomized models of finite automata in Chapter 3. After intro-
ducing the randomized models and their state complexity classes, we relate them to
the classes discussed in Chapter 2. This allows us to provide a complete characteriza-
tion of several important randomized classes. Among others, our results imply that
LasVegas automata can be exponentially more succinct than deterministic ones for
certain models of restricted two-way head motion.

This exponential gap between determinism and LasVegas randomization, how-
ever, heavily depends on the exponential running time of the LasVegas machines.
While long (more precisely, superlinear) running time makes no difference for non-
randomized models of finite automata, we show later that this is not the case for
randomized models.

6 Chapter 1. Introduction

Our results for finite automata corresponds well with the fact that LasVegas ran-
domization has equal power as nondeterminism for space-bounded computations of
Turing Machines, as shown in [MS99]. On the other hand, an interesting question is
whether the exponential running time is necessary to gain this power, i. e., what is the
relationship between deterministic and LasVegas automata with polynomial running
time. This question is still open and can be viewed as an analogy of the zpp vs. p
problem.

In Chapter 3, however, we provide a partial answer to this problem. More precisely,
we focus on the randomized finite automata restricted to linear running time. We
show that this restriction may enforce exponential blow-up in state complexity of
the automata, i. e., we separate the complexity classes corresponding to linear-time
and exponential-time LasVegas finite automata. More generally, we prove that the
restriction on running time cannot be compensated by a more powerful model of
randomization. In particular, we exhibit problems that are easily solvable by LasVegas
automata with exponential running time, but any (even the most powerful bounded-
error) finite automata running in linear time must be exponentially larger.

1.1 Models of Finite Automata

In this section, we introduce the models of finite automata used in this thesis. At
first, we introduce some general notation used. Let Σ be an alphabet, i. e., any finite
set of symbols. By Σ∗ we denote the set of all finite strings over Σ. If z ∈ Σ∗, then
|z|, zt, zt, and zR are its length, t-th symbol (if 1 ≤ t ≤ |z|), t-fold concatenation with
itself (if t ≥ 0), and reverse.

A language L over Σ is any subset of Σ∗, the complement of L is L := Σ∗ − L,
the reverse of L is LR := {wR | w ∈ L}. If w ∈ L, we say that w is a positive instance
of L, otherwise w is a negative instance of L. An automaton recognizes (or solves or
accepts) a language iff it accepts exactly the strings of that language.

1.1.1 Deterministic Two-Way Finite Automata

At first, we introduce the deterministic models of finite automata. The most general
one, introduced in [RS59], is the two-way finite automaton. Informally, it is a deter-
ministic machine with finite-state control and single head operating operating on the
input tape, where the input word, surrounded by end-markers, is written. The head
can move in both directions, but the machine is not allowed to modify the content of
the input tape.

There are several possible ways to define when the input word is accepted by the
automaton. The model is, however, quite robust, i. e., different ways of accepting
usually do not change the power of the model. To be consistent with other models
of finite automata, we require the automaton to accept by entering a special state
(called the accept state) after reading the right end-marker of the input.

1.1. Models of Finite Automata 7

More formally, we say that a deterministic two-way finite automaton (shortly
denoted as 2dfa) over an alphabet Σ and a set of states Q is any triple M = (qs, δ, qa)
of a start state qs ∈ Q, an accept state qa ∈ Q, and a transition function δ which
partially maps Q × (Σ ∪ {`,a}) to Q × {−1, 0,+1}, for some end-markers `,a /∈
Σ. An input z ∈ Σ∗ is presented to M surrounded by the end-markers, as `za.
The computation starts at qs and on `. The next state is always equal to the first
component of δ(q, a), where q is the current state and a is the symbol located under
the head. The second component of δ(q, a) determines the head motion. Value −1
means that the new head position is the one left adjacent to the old one, value 1 means
that the new position is right adjacent to the old one, and value 0 specifies that the
head is not moved in the current computation step. The automaton is neither allowed
to move the head to the left while reading `, nor allowed to move the head to the
right while reading a. The only exception is a transition from a to the accept state qa
and moving the head to the right; in this case, and only in this case, the automaton
accepts the input word z. Note that the computation can either loop, or hang, or fall
off a into qa (and accept z).

1.1.2 Deterministic Sweeping Finite Automata

It turns out that the state complexity of two-way finite automata is very hard to anal-
yse. Indeed, the relationship between determinism and nondeterminism, a problem
introduced in [SS78], is a long standing open problem. Hence, a model with restricted
possibility of head movement, called the deterministic sweeping finite automaton, was
proposed in [Sip80b]. Informally, the deterministic sweeping finite automaton is a spe-
cial case of the deterministic two-way finite automaton that can change the direction
of the head motion at the endmarkers only.

The formal definition of the sweeping deterministic finite automaton (shortly de-
noted as sdfa) is analogous to the definition of a two-way finite automaton. The
transition function δ, however, partially maps Q × (Σ ∪ {`,a}) to Q. The compu-
tation on an input z ∈ Σ∗, presented to M as `za, starts at the start state qs and
on `. The next state is always derived from δ and the current state and symbol. The
next position is always the adjacent one in the direction of motion; except when the
current symbol is ` or when the current symbol is a and the next state is not qa,
in which cases the next position is the adjacent one towards the other end-marker.
Again, the computation can either loop, or hang, or fall off a into qa. In the last case
we call it accepting and say that M accepts z.

More generally, for any input string z ∈ Σ∗ and state p, the left computation of
M from p on z is the unique sequence

lcompM,p(z) := (qt)1≤t≤m,

where q1 := p; every next state is qt+1 := δ(qt, zt), provided that t ≤ |z| and the value
of δ is defined; and m is the first t for which this provision fails. If m = |z|+1, we say
that the computation results z in qm; otherwise, 1 ≤ m ≤ |z| and the computation

8 Chapter 1. Introduction

hangs at qm and results in ⊥. The right computation of M from p on z is denoted by
rcompM,p(z) and defined symmetrically, i. e., rcompM,p(z) = lcompM,p(zR).

The traversals of M on z are the members of the unique sequence (ct)1≤t<m
where c1 := lcompM,p1(z) for p1 := δ(qs,`); every next traversal ct+1 is either
rcompM,pt+1(z) if t is odd and ct results in a state qt such that δ(qt,a) = pt+1 6= qa,
or lcompM,pt+1(z) if t is even and ct results in a state qt such that δ(qt,`) = pt+1;
and m is either the first t for which ct cannot be defined or ∞ if ct exists for all t.
Then, the computation of M on z, denoted by compM (z), is the concatenation of
(qs), c1, c2, . . . and possibly also (qa) if m is finite and even and cm−1 results in a state
qm−1 such that δ(qm−1,a) = qa. An example of a computation of sdfa is depicted in
Figure 1.1a.

1.1.3 Deterministic Rotating Finite Automata

When dealing with sweeping automata, it is usually necessary to argue about left and
right computations separately, although arguments for both directions are analogous.
Hence, allowing the left computations only makes it possible to express core ideas of
several proofs in a simpler way. This leads to the definition of deterministic rotating
finite automata. Historically, this model was introduced (in slightly different form)
in [SS78] under the name series finite automata, and later was generalized into the
sweeping finite automata. In fact, it is usually much easier to argue about the rotating
automata, and it is possible to generalize many of the arguments to sweeping automata
in a straightforward way.

The definition of a rotating deterministic finite automaton (shortly denoted as
rdfa) is analogical to the definition of sdfa. The only difference is in the definition
of the head motion. The next position of the head of a rdfa is always the adjacent
one to the right, except when the current symbol is a and the next state is not qa, in
which case it is the one to the right of `.

The formal definition of the computation of a rdfa M on z is similar to the defini-
tion for a sdfa, too. The traversals of M on z are always defined in terms of lcomp,
i. e., as the members of the unique sequence (ct)1≤t<m where c1 := lcompM,p1(z) for
p1 := δ(qs,`); every next traversal ct+1 is defined as lcompM,pt+1(z) if ct results in
a state qt such that δ(qt,a) = pt+1; and m is either the first t for which ct cannot be
defined or∞ if ct exists for all t. The computation of M on z, denoted by compM (z),
is the concatenation of (qs), c1, c2, . . . and possibly also (qa) if m is finite and cm−1

results in a state qm−1 such that δ(qm−1,a) = qa. An example of a computation of
rdfa is depicted in Figure 1.1b.

1.1.4 Deterministic One-Way Finite Automata

The well-known model of computation called one-way deterministic automata, intro-
duced in [Huf54, Mea55, Moo56], can be viewed as a special case of rdfas. We say
that M is an one-way deterministic finite automaton (1dfa for short) if it is a rdfa
that halts immediately after reading a: The value of δ on any state q and on a is

1.1. Models of Finite Automata 9

(a)

qs
q2

q4

q3
q5 → qa

q1

(b)

qs
q2

q1

q3 → qa

Figure 1.1: Computation of a (a) sweeping and (b) rotating automaton.

always either qa or undefined. If it is qa, we say q is a final state; if it is undefined,
we say q is nonfinal. The state δ(qs,`), if defined, is called initial. An example of a
one-way computation is shown in Figure 1.2.

qf qaqs qi

qnqs qi

Figure 1.2: The computation of a one-way automaton. The computation starts in the
start state qs on ` and the first symbol of the input word is read when the automaton is
in the initial state qi. After reading the last symbol of the input word, the automaton
either reaches a final state qf and enters the accept state qa afterwards, or it reaches
a non-final state qn and hangs.

Note that this definition is equivalent to the other widely-used definition of one-
way automata: Here, the one-way automaton M is a five-tuple (Q,Σ, δ, q0, F), where
Q is the set of states of M , Σ is the input alphabet, δ is the transition function, q0 is
the initial state and F is the set of final states. The input word z is presented to M
without end-markers, the computation starts in q0 on the first symbol z. An input
word z is accepted by M if and only if some state from F is reached after reading the
last symbol of z.

1.1.5 Nondeterministic Finite Automata

For every model of deterministic finite automata introduced so far (i. e., 1dfas, rdfas,
sdfas, and 2dfas), it is possible to define its nondeterministic counterpart. In this
way, we obtain nondeterministic one-way finite automata (1nfas for short), nondeter-
ministic rotating finite automata (rnfas for short), nondeterministic sweeping finite
automata (snfas for short), and nondeterministic two-way finite automata (2nfas
for short). More precisely, a nondeterministic automaton M is allowed to make more
than one move at each step. In this case, every input word z admits a set of compu-

10 Chapter 1. Introduction

tations of M . The input word z is accepted if and only if at least one of the possible
computations is accepting.

More formally, this means that δ partially maps Q × (Σ ∪ {`,a}) to the set of
all non-empty subsets of Q × {−1, 0, 1} in the case of two way automata, or to the
set of all non-empty subsets of Q in the case of sweeping, rotating, and one-way
automata. Then, lcompM,p(z), rcompM,p(z), and compM (z) of a nondeterministic
sweeping automaton M are actually sets of computations, and M accepts z if and
only if compM (z) contains at least one accepting computation. Analogous definition
is used for rotating and one-way nondeterministic automata.

All models of finite automata introduced so far can be categorized according to
two independent properties: The capability of the head motion (two-way, sweeping,
rotating, one-way) and the mode of computation (nondeterministic, deterministic).
Each combination of these two properties yields a reasonable model of automata.

Easily, each deterministic machine can be viewed also as a nondeterministic ma-
chine of the same type. Furthermore, one-way automata are just a special case of
rotating automata. Any rotating automaton with k states can be easily transformed
into a corresponding two-way automaton with at most 2k states by simulating each
“jump” to the beginning of the input word by one right-to-left traversal. Easily,
any sweeping automaton with k states can be simulated by a corresponding two-way
automaton with at most 2k states, i. e., without asymptotic blowup in the state com-
plexity. Hence, we can arrange all models introduced so far in a “map” as shown in
Figure 1.3, where each model is at least as powerful as its left and bottom neighbor.3

sdfa 2dfardfa1dfa

1nfa rnfa snfa 2nfa

d

r s 21 ⊆ ⊆ ⊆

⊆

n

Figure 1.3: Models of finite automata.

So far, we have not introduced any models of randomized automata. Since we do
not deal with randomization until Chapter 3, we postpone their definition until then.

1.2 Complexity Classes

It is a well known result that all models of finite automata introduced in the previous
subsection accept exactly the class of regular languages (equivalent computational
power of 2nfas and 1dfas, proven in [Kol72], implies this fact). Nevertheless, different

3The map provided in Figure 1.3 is rather informal, since we have not defined what it means that
some model is “at least as powerful” as another one yet. We specify this, however, more precisely in
Section1.2 by introducing complexity classes of finite automata.

1.2. Complexity Classes 11

models of automata require different number of states to accept the same language.
Hence, we focus on the analysis of the state complexity of finite automata, i. e., on
the complexity measure defined by the number of states.

In this section, we introduce complexity classes induced by the state complexity
of finite automata. A state of a finite automaton represents certain information that
is stored in the memory of the automaton. Hence, the state complexity of finite
automata can be viewed as an analogy of the space complexity of Turing machines.

Because the state complexity of finite automata is a static complexity measure,
the state complexity of any fixed language is a fixed constant. Hence, it does not make
any sense to analyze the asymptotic complexity of a single language. To overcome this
problem, we consider families of languages instead of single languages, in a similar
way as in [SS78,KKM07,KKM08].

Let M1,M2, . . . be finite automata and let L1, L2, . . . be languages. A family of
automata M = (Mn)n≥1 solves a family of languages L = (Ln)n≥1 iff, for all n, Mn

solves Ln. The automata of M are “small” iff, for some polynomial p and all n, Mn

has at most p(n) states.
The state-complexity class 1d consists of every family of languages that can be

solved by a family of small 1dfas. The classes rd, sd, 2d, 1n, rn, sn, 2n are defined
similarly, by replacing 1dfas with rdfas, sdfas, 2dfas, 1nfas, rnfas, snfas, 2nfas.
The naming convention is from [SS78]; in general, class C consists of every family of
languages that can be solved by a family of small Cfas.

Any language operator can be generalized to work on language families in a
straightforward way, the operator is just separately applied to all languages in the
family. In particular, we say that a complement of a family of languages L = (Ln)n≥1

is defined as L := (Ln)n≥1, and a reverse of L is defined as LR := (LR
n)n≥1.

If C is a class, then co-C consists of all families of languages whose complement is
in C, and re-C consists of all families of languages whose reverse is in C.

The analysis of the relationship between various complexity classes can be often
simplified by the following straightforward observation:

Observation 1.1. Let C1, C2 be any classes of language families. It holds that:

1. re-(re-C1) = C1

2. co-(co-C1) = C1

3. If C1 ⊆ C2, then re-C1 ⊆ re-C2.

4. If C1 ⊆ C2, then co-C1 ⊆ co-C2.

5. If C1 6⊇ C2, then re-C1 6⊇ re-C2.

6. If C1 6⊇ C2, then co-C1 6⊇ co-C2.

7. If C1 ⊆ C2 6⊇ C3 ⊆ C4, then C1 6⊇ C4.

12 Chapter 1. Introduction

1.2.1 Self-Verifying Complexity Classes

Due to close connection to randomized automata models, we also consider the “self-
verifying” classes 1∆ := 1n ∩ co-1n, r∆ := rn ∩ co-r∆, s∆ := sn ∩ co-sn, and 2∆ :=
2n ∩ co-2n. In general, the naming convention is that X∆ := Xn ∩ co-Xn, for any X.

The notion of the self-verifying nondeterminism has been introduced in [HS96] and
[ĎHRS97]. Here, however, it was considered as a separate model of finite automata:
The self-verifying automaton is able to make nondeterministic choices, and is able to
give three types of answers: “yes”, “no”, and “I do not know”. Whenever the answer
is “yes” or “no”, it has to be correct, i. e., any possible computation is required to
provide either correct answer or the “I do not know” answer. Furthermore, for each
input there must exist at least one computation that gives the correct answer. In
other words, self-verifying nondeterminism differs from the ordinary nondeterminism
by the semantics of the negative answer: Whereas in the ordinary nondeterminism, a
negative answer does not provide any information about the input word z, the answer
no of a self-verifying machine indicates a proof that z is a negative instance of the
solved problem.

Following our naming convention, we call the one-way, rotating, sweeping, and
two-way self-verifying automaton as 1∆fa, r∆fa, s∆fa, and 2∆fa, respectively. More
formally, the self-verifying automata are just nondeterministic machines augmented
by a special reject state qr, whose behavior is analogous to the behavior of the accept
state. Then, any computation can either either loop, or hang, or fall off a into qa
or qr. In this last case we call it accepting (rejecting) and say that M accepts z
(rejects z).

It is not difficult to see that this definition is equivalent to the definition via
intersecting nondeterministic and co-nondeterministic classes. Indeed, consider any
problem L in X∆ for any X ∈ {1,r, s, 2}, i. e., there exist small familiesM(1),M(2) of
Xnfas solving L and L, respectively. Then it is possible to construct a small family
M of X∆fa solving L in the following way: Consider any Xnfas M (1)

i , M (2)
i with

at most k states solving Li and Li, respectively. We can construct an O(k)-state
X∆fa Mi solving Li in the following way: At the beginning of the computation, Mi

nondeterministically guesses if the input word z is a positive or negative instance of
the solved problem. Afterwards, it simulates M (1)

i (M (2)
i) and accepts z (rejects z)

if the simulated automaton accepts the input word, respectively. If the simulated
automaton does not accept the input word, M neither accepts nor rejects z. Clearly,
M is a correct self-verifying automaton, since every word can be either accepted or
rejected, and no word can be both accepted and rejected.

For the other direction, it is easy to observe that any self-verifying automaton
M solving language L can be transformed into nondeterministic automaton M ′ of
the same type solving L, just by ignoring the special meaning of the reject state.4

Similarly, it is possible to construct M ′ solving L just by declaring the reject state

4To be formally precise, it is necessary to remove any transition from the reject state qr while
reading a; in M , this leads to the rejection of the input word, but M ′ should just hang.

1.2. Complexity Classes 13

qr of M to be the accept state of M ′ and ignoring the special meaning of the accept
state qa of M . In both cases, M ′ has the same number of states as M .

Similarly as for the automata models, we can arrange all the introduced classes in
a grid (see Figure 1.4), where each class is superset of its left and bottom neighbor.
Compared to Figure 1.3, we can add the self-verifying classes to the map, too. The fact
that X∆ ⊆ Xn holds for any X ∈ {1,r, s, 2} is easy to observe. The fact that Xd ⊆ X∆

follows easily from Xd ⊆ Xn and the fact that Xd is closed under complement for all
presented classes Xd – a fact that we discuss in Subsection 2.4.1.

sd 2drd1d

1n rn sn 2n

1∆ r∆ s∆ 2∆

d

r s 21 ⊆ ⊆ ⊆

⊆

∆

⊆

n

Figure 1.4: Basic complexity classes of finite automata.

Our work is dedicated to exploring the relationship among different complexity
classes of finite automata. Hence, we will fill more and more details in the Figure 1.4,
including the relationships of the co- and re- classes, as well as the randomized classes.
In particular, our results show an interesting hierarchy inside the complexity classes
of finite automata. Moreover, we analyse the closure properties of the considered
classes as well.

In this thesis, we focus on the state complexity of finite automata. There are,
however, several different ways how to measure the size of automata, such as the
number of bits needed to describe the automaton (i. e., the descriptional complexity)
or the number of transitions in the transition function of the automaton. Although
these measures are not equivalent to the state complexity, they are polynomially
related to the state complexity if the size of the alphabet is polynomial. Furthermore,
it is easy to see that any language family with polynomial descriptional complexity
or transition complexity has a polynomial alphabet. In our definition of the state
complexity classes, problems with polynomially related complexity always fall into
the same class. Hence, the definition of the complexity classes does not depend on
the chosen measure if we consider only language families with alphabets of polynomial
size. Even though we deal also with exponentially large alphabets in this thesis, it
is not difficult to see that all presented results can be easily adapted for automata
restricted to the binary alphabet as well. Hence, all relationships between different
complexity classes presented in this thesis hold also for the other measures of automata
size.

14 Chapter 1. Introduction

1.3 Known Results

Deterministic one-way finite automata were introduced in [Huf54, Mea55, Moo56].
Later, Rabin and Scott generalized their definition to nondeterministic ones in [RS59].
Here, they introduced the well-known subset construction, which they used to prove
that the computational power of 1dfas and 1nfas is equal. Two-way deterministic
automata were introduced in [RS59], too, as well as the proof of equivalent computing
power of 1dfas and 2dfas (a simpler proof of this fact was published in [She59]). Non-
deterministic variant of two-way finite automata was introduced in [Kol72], together
with the proof of their computational equivalence with 1dfas. (An alternative proof
for this fact is in [Var89]). Since 2nfas are obviously the strongest model introduced
in Figure 1.3, and 1dfas are the weakest model there, the result of [Kol72] implies
that all models of finite automata introduced in Figure 1.3 have equal computational
power.

The fact that all models of finite automata introduced so far have the same com-
putational power encourages to compare their succinctness, i. e., to compare the size
of different automata types required to solve the same language. Indeed, the study of
the succinctness of finite automata was initiated very early and a lot of research has
been made in this direction.

In [MF71] it was proven that a 1dfa may require 2k states to simulate a k-
state 1nfa, hence, the subset construction of [RS59] is tight. The gap in the state
complexity between 2dfas and 1dfas is superexponential: It was shown in [MF71]
that a 1dfa may require kk states to simulate a 2dfa with O(k) states. This was
already quite close to the upper bound of [She59], which proved that any k-state 2dfa
can be simulated by a 1dfa with (k+ 2)k+1 states. The exponential gap in the state
complexity between 1nfas and 1dfas, as well as superexponential gap between 2dfas
and 1dfas, was proven independently in [Moo71].

While the relationship between determinism and nondeterminism was solved very
soon for one-way finite automata, this is not the case for two-way automata. The
question about the gap in state complexity between 2dfas and 2nfas was introduced
in [SS78], and it is still an open problem. Hardness of this problem is emphasized also
by its relationship to the l vs. nl problem: Results of [Sip80b,Ber80] show that if there
is an exponential gap in the state complexity of 2dfas and 2nfas and, furthermore, it
is possible to prove this gap using words of length polynomial in the number of states of
the 2nfa, then the classes of problems solvable by deterministic and nondeterministic
Turing machines working in logarithmic space (l and nl, respectively) are not equal.
As the l vs. nl problem is one of the major open problems in the complexity theory,
it gives additional motivation for the study of the relationship between 2dfas and
2nfas.

Since the relationship between determinism and nondeterminism for two-way au-
tomata was too hard to be attacked directly, the model of sweeping automata was
proposed in [Sip80b]. Here it was also proven that, in the case of sweeping automata,
the nondeterminism can be exponentially more succinct than determinism. In fact,
a stronger result was proven in [Sip80b], showing that sdfas may require exponen-

1.3. Known Results 15

tially more states that 1nfas (the exact value of the gap between sdfas and 1nfas
was proved later in [Leu01]). Furthermore, the relationship with the l vs. nl prob-
lem propagates to the sweeping case, too: If the exponential gap in state complexity
between determinism and nondeterminism for sweeping automata is reachable using
only words of polynomial length, then l 6= nl. On the other hand, it was shown
in [SS78] that 1nfas may require exponentially more states than sdfas.

To prove the gap between snfas and sdfas, the technique of generic words was
introduced in [Sip80b]. Unfortunately, this technique relies heavily on long words, so
it is not possible to solve the l vs. nl problem with it. Nevertheless, it is a powerful
technique for proving lower bounds on the state complexity of rotating and sweeping
automata. We employ it in the technique of hardness propagation and we generalize
it for the case of time-bounded randomized automata.

The ideas of [Sip80b] can be used to prove an exponential gap in state complex-
ity of sweeping and two-way deterministic automata, too. In fact, [Sip80b] cites a
personal communication with J. Seiferas as a proof of this fact. An independent
proof was, however, published in [Ber80, Mic81]. A partial answer to the relation-
ship between snfas and 2dfas was provided in [Kap06]. Here it was proven that a
sweeping nondeterministic automaton may require exponentially more states than a
two-way deterministic automaton. The opposite direction, i. e., the question if a 2dfa
may require exponentially more states than a snfa for some language, is still open.
A positive answer would, however, immediately imply an exponential gap between
determinism and nondeterminism for two-way automata.

The notion of self-verifying nondeterminism was introduced in [HS96] in the con-
text of communication complexity and in [ĎHRS97] for finite automata, where the
close connection to LasVegas randomization was explained. The exponential gap in
the state complexity of 1dfas and 1∆fas, as well as of 1∆fas and 1nfas, was proved
also in [SS78].

The relationship between self-verifying nondeterminism on one hand, and the de-
terminism and nondeterminism on the other hand, is open for two-way automata. In
fact, showing an exponential gap on either side would imply the existence of an ex-
ponential gap between determinism and nondeterminism immediately: Any 2∆fa can
be trivially simulated by a 2nfa with the same number of states. Furthermore, it was
proven in [GMP07] that any k-state 2dfa accepting a language L can be transformed
into a O(k)-state 2dfa accepting L (hence improving the upper bound of O(k2) states
proved in [Sip80a]). For this reason, any k-state 2dfa can be simulated by an O(k)-
state 2∆fa. A quadratic gap in the state complexity between nondeterminism and
self-verification for two-way automata was proven in [HS01b].

The relationship between self-verification and determinism/nondeterminism for
rotating and sweeping automata is one of the main problems addressed in this the-
sis. More precisely, we prove an exponential gap between determinism and self-
verification, as well as an exponential gap between self-verification and nondetermin-
ism for both the rotating and the sweeping case. These results were also published
in [KKM07,KKM08].

16 Chapter 1. Introduction

Using the above-mentioned results, we can express the basic relationships among
the complexity classes in Figure 1.4, as depicted in Figure 1.5. Here, a solid arrow
C → C′ represents the fact that the class C′ is strict superset of C. A dashed arrow
C → C′ denotes that C′ 6⊆ C, i. e., there is some family of languages that belongs to
C′, but does not belong to C. Hence, drawing a solid arrow C → C′ is equivalent to
drawing a dashed arrow and saying that C ⊆ C′.

sd 2drd1d

1n rn sn 2n

1∆ r∆ s∆ 2∆

d

r s 21 ⊆ ⊆ ⊆

⊆

∆

⊆

n

Figure 1.5: Known relationships between complexity classes of finite automata. A
solid arrow C→ C′ means that C (C′, a dashed arrow C→ C′ means that C′ 6⊆ C.

It is easy to observe that the arrows are in some sense transitive: If there is a
dashed arrow C1 → C2, then we can draw a dashed arrow C1 → C3 for any C3 ⊇ C2,
and also a dashed arrow C4 → C2 for any C4 ⊆ C1. Using such transitivity, results in
Figure 1.5 immediately imply that 1∆ (s∆ (2∆ and 1n (sn (2n.

In our work, we focus on the complexity classes that ignore polynomial differences
in the automata size. In some sense, this is an analogy of the well-known polynomial
complexity classes of Turing machines, and it makes the complexity classes more
robust. It is possible, however, to analyse also the exact increase in state complexity
when converting machine of one kind into another. An overview of exact values of such
trade-offs between one-way and two-way deterministic and nondeterministic finite
automata can be found in [Kap06]. Known results on trade-offs between different
models are discussed in [GKK+02] as well.

For every complexity class, we have defined its complement and reverse in Sec-
tion 1.2. In Chapter 2, we add all complements and reverses of classes in Figure 1.5
into the map, and provide a characterization of their relationships. In fact, it is possi-
ble to perform similar analysis for any other language operator instead of complement
and reverse. This approach has been extensively studied (see, e. g., [JJS04,Jir05] and
references therein).

Since the relationship between 2n and 2d is a long-standing open problem, several
other approaches have been proposed for attacking it. One of them is to analyze
the degree of non-obliviousness of two-way finite automata, as proposed in [HS03b,
ĎHJ+01]. Here, the degree of non-obliviousness of a two-way finite automaton M
is measured as the number of different orders of the input symbols that can appear
in computations of M on words of length n. It is shown, by reduction to the case

1.3. Known Results 17

of sweeping automata, that 2dfas with non-obliviousness of degree o(n) may require
exponentially more states than 1nfas.

Another extensively studied approach is to restrict the two-way automata to unary
languages only, i. e., languages over a single-symbol alphabet. Here, the situation is
often quite different than in the general case. For example, it was proven in [Chr86]
that the cost of transformation from 1nfas to 1dfas is subexponential for unary
languages; more precisely, it was proven that for any k-state 1nfa accepting an unary
language there exists an equivalent 1dfa with O

(
e
√
k log k

)
states and that this bound

is asymptotically tight. Exact trade-offs between 1nfas and 1dfas for unary languages
was further studied in [Gef07].

Some of the most prominent open problems regarding two-way automata were
solved for the case of unary languages. Another result of [Chr86] shows that for any
k-state 1nfa accepting a unary language there exists an equivalent 2dfa with O(k2)
states, and that this bound is tight. Furthermore, a tight subexponential bound
O
(
e
√
k log k

)
for simulation of 2dfas by 1dfas was proven in [Chr86] as well. A

subexponential upper bound on the simulation of 2nfas by 2dfas for unary languages
was shown in [GMP03]: More precisely, it was shown that any k-state 2nfa accepting
a unary language has an equivalent sdfa with O

(
kdlog2(k+1)+3e) states. Furthermore,

an upper bound O
(
e
√
k log k

)
for the simulation of unary 2nfas by 1dfas, as well as an

upper bound O(k2) for the simulation of unary 2nfas by snfas, was shown in [MP01].
Another interesting results for unary languages deals with the problem of com-

plementation. Without imposing the restriction of unary languages, the question if
2n equals co-2n is open. In fact, it is conjectured that 2n 6= co-2n and proving this
conjecture would imply 2d 6= 2n. On the other hand, it was proven in [GMP07] that,
for any k-state 2nfa accepting language L, there exists a 2nfa accepting L with only
O(k8) states.

To conclude the overview of previous research relevant to this thesis, we note that
relationship between nondeterminism, randomization, and determinism was studied
also for different models of automata, such as finite automata with two-dimensional
input [ĎHI00]. The definition of the randomized models of finite automata, as well as
the overview of results concerning these models, is postponed until Chapter 3, which
is devoted to randomized finite automata.

18 Chapter 1. Introduction

Chapter 2

Determinism vs.
Nondeterminism

In this chapter, we compare the state complexity classes of deterministic, nondeter-
ministic, and self-verifying finite automata. In particular, we focus on refining the
hierarchy between the classes in Figure 1.5, as well as their complements and re-
verses. The main result of this chapter is the separation of sd and s∆. Furthermore,
we analyse the closure properties of the introduced complexity classes.

To prove our results, we introduce a technique of hardness propagation for proving
separations between the complexity classes. Using this technique, we are able to
generate witness languages of these separations in a systematic way, what makes this
technique interesting in itself. Furthermore, we generalize the hardness propagation
for randomized models in the next chapter.

The high-level idea of the hardness propagation is the following one. To separate
classes Csmall and Clarge, it is sufficient to provide a witness, i. e., a family of languages
L ∈ Clarge−Csmall. While proving that a certain L is in Clarge can be often done by a
straightforward construction of the corresponding family of small automata, proving
that L /∈ Csmall is usually more difficult. It may be, however, feasible to prove that
L is not in some class Ctiny that is even more restricted than Csmall. If we are able
to find a language family operator O such that 1) for any language family such that
L /∈ Ctiny, it holds that O(L) /∈ Csmall, and 2) Clarge is closed under O, we directly
obtain a witness O(L) ∈ Clarge − Csmall of a desired separation. In this way, we can
build a harder language (O(L)) out of an easier one (L); the hardness of L for class
Ctiny is propagated to the class Csmall.

Obviously, the hardness propagation can be done in multiple steps. We start with
a simple language family that is hard for some very restricted class, and, using several
appropriate language operators, we propagate the hardness to more powerful classes.

We structure this chapter as follows. At first, we introduce language operators
that are later used in the hardness propagation. Next, we introduce several models
of finite automata used as intermediate steps. Afterwards we prove several hard-

19

20 Chapter 2. Determinism vs. Nondeterminism

ness propagation lemmas, which are used in the next section to fill the map of class
relationship.

Results presented in this chapter have been published in [KKM07,KKM08].

2.1 Language Operators

We have introduced complement and reverse in Section 1.1. Now we define some more
language operators that are helpful in the hardness propagation.

Let L,L1, L2 be arbitrary languages over alphabet Σ. Fix a delimiter # that is
not in Σ. The languages L1 ∧L2, L1 ∨L2, L1 ⊕L2,

∧
L,
∨
L, and

⊕
L over alphabet

Σ ∪ {#} are defined as follows:

L1 ∧ L2 := {#x#y# | x, y ∈ Σ∗, x ∈ L1 ∧ y ∈ L2}
L1 ∨ L2 := {#x#y# | x, y ∈ Σ∗, x ∈ L1 ∨ y ∈ L2}
L1 ⊕ L2 := {#x#y# | x, y ∈ Σ∗, x ∈ L1 ⇔ y /∈ L2}∧

L := {#x1# . . . #xl# | l ≥ 0, xi ∈ Σ∗, (∀i)(xi ∈ L)}∨
L := {#x1# . . . #xl# | l ≥ 0, xi ∈ Σ∗, (∃i)(xi ∈ L)}⊕
L := {#x1# . . . #xl# | xi ∈ Σ∗, the number of i such that xi ∈ L is odd}

(2.1)

We call these operators as conjunctive concatenation, disjunctive concatenation,
parity concatenation, conjunctive iteration, disjunctive iteration, and parity iteration,
respectively. Informally, language resulting from any of these operations consists of
#-delimited blocks and a word is in the language if and only if the blocks satisfy the
boolean operation used to define the operator.

As noted in Section 1.2, all language operators can be generalized for language
families in a straightforward way, by applying the language operator on every member
of the language family separately. More formally, let L1 = (L1n

)n≥1, L2 = (L2n
)n≥1

be language families, then L1 ∧ L2 := (L1n ∧ L2n)n≥1, and
∧
L1 := (

∧
L1n)n≥1. The

definition for ∨,
∨

, ⊕ and
⊕

is analogous.
It is easy to check that the following observation holds.

Observation 2.1. The following equation holds both for languages and for language
families L1, L2, L:

(L1 ∧ L2)R = LR
2 ∧ LR

1 (
∧
L)R =

∧
(LR)

(L1 ∨ L2)R = LR
2 ∨ LR

1 (
∨
L)R =

∨
(LR)

(L1 ⊕ L2)R = LR
2 ⊕ LR

1 (
⊕
L)R =

⊕
(LR)

(L)R = (LR)

Similar facts hold for complementation, but the situation is a bit more complicated.
For example, the language (L1 ∧ L2) contains all words from language L1 ∨ L2, plus
all words that do not consists of #-delimited blocks, i. e., not from language R :=
#Σ∗#Σ∗#. We call such words not well-formed. Hence, it holds that (L1 ∧ L2) =

2.2. Parallel Automata 21

(L1 ∨ L2) ∪ R. Similarly, L1 ∨ L2 = (L1 ∧ L2) ∩ R. Nevertheless, both R and R are
very simple regular languages, and union (intersection) with them usually does not
play any significant role when dealing with state-complexity classes of finite automata:

Lemma 2.1. Let L,L1, and L2 be families of languages and let C be a class of
language families closed under union and intersection with any family from 1d. It
holds that:

(L1 ∧ L2) ∈ C⇔ L1 ∨ L2 ∈ C (
∧
L) ∈ C⇔

∨
L ∈ C

(L1 ∨ L2) ∈ C⇔ L1 ∧ L2 ∈ C (
∨
L) ∈ C⇔

∧
L ∈ C

(L1 ⊕ L2) ∈ C⇔ L1 ⊕ L2 ∈ C

Proof. To prove the first claim, let

L1 = (L1n
)n≥1, L2 = (L2n

)n≥1,

such that L1i
, L2i

are languages over Σi. As already said, it holds that

(L1 ∧ L2) = (L1 ∨ L2) ∪R; L1 ∨ L2 = (L1 ∧ L2) ∩R

where R := (#Σ∗n#Σ
∗
n#)n≥1. Easily, R,R ∈ 1d, hence the first claim follows. Proof

of the remaining claims are analogous, with the exception of using the well-formed
language family R defined as R := (#(Σ∗n#)∗)n≥1 for the conjunctive iteration and
disjunctive iteration.

All space-complexity classes introduced so far are closed under the intersection
with 1d, what is straightforward to verify. Indeed, given a 1dfa M1 accepting lan-
guage L1 and any Xfa M2 accepting language L2 such that both M1 and M2 have at
most k states, we can use the well-known Cartesian-product construction to construct
a Xfa accepting L1 ∩ L2 with O(k2) states.

2.2 Parallel Automata

In this section, we introduce additional models that will be useful as intermediate
steps of hardness propagation: Instead of propagating hardness directly from one-way
to rotating/sweeping machines, we propagate the hardness from one-way to parallel
automata and then from parallel automata to rotating and sweeping automata.

A (two-sided) parallel automaton (p21dfa), introduced in [Sip80b], is any triple
M = (L,R, F) where L = {C1, . . . , Ck} and R = {D1, . . . , Dl} are disjoint families
of 1dfas, and F ⊆ QC1

⊥ × · · · ×Q
Ck

⊥ ×Q
D1
⊥ × · · · ×Q

Dl

⊥ , where QA is the state set of
automaton A and QA⊥ := QA ∪ {⊥} contains all possible results of runs of A. To run
M on z means to run each A ∈ L∪R on z from its initial state and record the result,
but with a twist: each A ∈ L reads from left to right (i. e., reads z), while each A ∈ R
reads from right to left (i. e., reads zR). We say that M accepts z iff the tuple of the

22 Chapter 2. Determinism vs. Nondeterminism

results of these computations is in F . More formally, let Ci(z) ∈ QCi

⊥ be the result of
lcomp

Ci,q
Ci
I

(z), and let Di(z) ∈ QDi

⊥ be the result of lcomp
Di,q

Di
I

(zR), where qAI is
the initial state of A. The parallel automaton M accepts z iff

(C1(z), . . . , Ck(z), D1(z), . . . , Dl(z)) ∈ F.

When R = ∅ or L = ∅, we say M is left-sided (a pl1dfa) or right-sided (a pr1dfa),
respectively.

A parallel intersection automaton (∩21dfa, ∩l1dfa, or ∩r1dfa) [SS78] is a parallel
automaton whose F consists of the tuples where all results are final states, i. e.,
F = FC1 × . . . × FC

k × FD1 × . . . × FDl , where FA is the set of final states of
automaton A. If F consists of all tuples where some result is a final state, the
automaton is a parallel union automaton (∪21dfa, ∪l1dfa, or ∪r1dfa) [SS78]. Thus,
a ∩21dfa accepts the input word z if and only if all its components accept z; a ∪21dfa
accepts z if and only if at least one component does.

The number of states of a parallel automaton M is the sum of the numbers of
states over all components of M . In accord with previous definitions, we say that a
family of parallel automata M = (Mn)n≥1 is ‘small’ if Mn has at most p(n) states
for some polynomial p and all n. Hence, automata of M have a polynomial number
of components with polynomial number of states each.

We use parallel intersection and union automata as intermediate steps of hardness
propagation, hence we deal with their complexity classes, too. Following our naming
convention, class ∩21d (∩l1d, ∩r1d, ∪21d, ∪l1d, ∪r1d) contains all language fami-
lies recognizable by small families of ∩21dfas (∩l1dfas, ∩r1dfas, ∪21dfas, ∪l1dfas,
∪r1dfas), respectively.

The following lemma explains basic relationships between parallel automata on
one hand and rotating and sweeping automata on the other hand. Using these rela-
tionships, we are able to provide a map of parallel-automata classes in Figure 2.1.

Lemma 2.2. The following facts hold:

1. 1d ⊆ ∩l1d ∩ ∪l1d, ∩l1d ∪ ∩r1d ⊆ ∩21d,

2. ∩l1d = re-∩r1d, ∪l1d = re-∪r1d, ∩21d = re-∩21d, ∪21d = re-∪21d

3. ∩l1d = co-∪l1d, ∩r1d = co-∪r1d, ∩21d = co-∪21d

4. ∩l1d ∪ ∪l1d ⊆ rd, ∩21d ∪ ∪21d ⊆ sd.

5. Every rdfa (sdfa) with k states can be simulated by a k-component pl1dfa
(p21dfa) whose components all have k states.

Proof. 1. Since one-way automata are in fact special cases of both parallel union
and parallel intersection automata, and left-sided and right-sided parallel au-
tomata are special cases of two-sided parallel automata, the claim follows.

2.2. Parallel Automata 23

2. If L can be solved by ∩l1dfa or ∩21dfa M = (L,R) with m states, then LR can
be solved by ∩r1dfa or ∩21dfa M ′ = (R,L) with m states, and vice versa. The
same holds for parallel union automata.

3. If L can be solved by a k-component ∩l1dfa M with m states, then L can be
solved by a k-component ∪l1dfa M ′ with m + k states: to construct M ′, it is
sufficient to 1) make all components of M non-hanging by adding one new state
to every component, and 2) make all nonfinal states final and vice versa. Every
word w /∈ L is rejected by some component of M , hence it is accepted by the
corresponding component of M ′. The same argument holds for ∩r1dfas and
∩21dfas, too.

4. A rdfa can simulate any ∩l1dfa or ∪l1dfa in a straightforward way, simulating
one component per traversal. We assume that every component of the parallel
automaton is non-hanging, what can be achieved by adding one new state to
every component of the automaton. Then, the set of states of the rdfa consists
of all states of the parallel automaton plus one new accept state, so a small
family of parallel automata are simulated by a small family of rotating automata.
Similar arguments hold for simulation of ∩21dfa or ∪21dfa by a sdfa.

5. Proven in [Sip80b] for sdfas; each component of the p21dfa simulates one traver-
sal of the sdfa. The proof for rdfas is analogous.

1d

re-1d

∪21d

∩21d

sd 2d

∪l1d

∪r1d

∩r1d

∩l1d

rd

re-rd

Figure 2.1: Complexity classes of finite automata, zoom to the parallel automata
classes. A solid arrow C → C′ means that C ⊆ C′. Note that all complements and
reverses of classes corresponding to parallel automata are already included in the map
due to Lemma 2.2.

The correctness of the inclusions in Figure 2.1 follows from Lemma 2.2 and from
Observation 1.1. The remaining inclusions, i. e., rd∪ re-rd ⊆ sd ⊆ 2d, are very easy
to verify.

24 Chapter 2. Determinism vs. Nondeterminism

2.3 Hardness Propagation

As already introduced, the main part of the hardness propagation consists of a proof
that if a family of languages L is hard for some restricted model of finite automata,
a family of more complex languages O(L) is hard for some more powerful model
of automata. We use two basic tools for the construction of hard inputs to finite
automata: the confusing and the generic strings. In this section, we present these
tools and use them to prove the core hardness propagation lemmas.

2.3.1 Confusing Strings

We use the idea of confusing strings for the “lower level” of the hardness propagation,
i. e., for propagating hardness from one-way deterministic automata to parallel inter-
section automata. Intuitively, we say that a string y confuses a parallel intersection
automaton M if it should be rejected, but for each component of M it is indistin-
guishable from some word ỹ that should be accepted, or if y should be accepted, but
some component of M hangs on y. In any case, existence of the confusing string
implies that automaton M can not work correctly.

More formally, let M = (L,R) be a ∩21dfa and let L be a language over alphabet
Σ. We say a string y ∈ Σ∗ confuses M on L if y ∈ L but some component hangs on
it or if y /∈ L but every component treats it identically to some word from L:

y ∈ L and (∃A ∈ L ∪R)
(
A(y) = ⊥

)
or

y 6∈ L and (∀A ∈ L ∪R)(∃ỹ ∈ L)
(
A(y) = A(ỹ)

) (2.2)

It is not difficult to see that if some y confuses M on L, then M does not solve L. Note,
though, that (2.2) is independent of the selection of final states in the components of
M . Thus, if F(M) is the class of ∩21dfas that may differ from M only in the selection
of final states, then a y that confuses M on L confuses every M ′ ∈ F(M), too, and
thus no M ′ ∈ F(M) solves L, either. The converse is also true.

Lemma 2.3. Let M = (L,R) be a ∩21dfa and L a language. Then, strings that
confuse M on L exist iff no member of F(M) solves L.

Proof. [⇒] Suppose some y confuses M on L. Fix any M ′ = (L′,R′) ∈ F(M). Since
(2.2) is independent of the choice of final states, y confuses M ′ on L, too. If y ∈ L:
By (2.2), some A ∈ L′ ∪R′ hangs on y. So, M ′ rejects y, and thus fails. If y 6∈ L:
If M ′ accepts y, it fails. If it rejects y, then some A ∈ L′ ∪ R′ does not accept y.
Consider the ỹ guaranteed for this A by (2.2). Since A(ỹ) = A(y), we know ỹ is also
not accepted by A. Hence, M ′ rejects ỹ ∈ L, and fails again.

[⇐] Suppose no string confuses M on L. Then, no component hangs on a positive
instance; and every negative instance is ‘noticed’ by some component, in the sense
that the component treats it differently than all positive instances:

(∀y ∈ L)(∀A ∈ L ∪R)
(
A(y) 6= ⊥

)
and

(∀y 6∈ L)(∃A ∈ L ∪R)(∀ỹ ∈ L)
(
A(y) 6= A(ỹ)

)
.

(2.3)

2.3. Hardness Propagation 25

This allows us to find an M ′ ∈ F(M) that solves L, as follows. We start with all
states of all components of M unmarked. Then we iterate over all y 6∈ L. For each of
them, we pick an A as guaranteed by (2.3) and, if the result A(y) is a state, we mark
it. When this (possibly infinite) iteration is over, we make all marked states nonfinal
and all unmarked states final. The resulting ∩21dfa is our M ′.

To see why M ′ solves L, consider any string y. If y 6∈ L: Then our method
examined y, picked an A, and ensured A(y) is either ⊥ or a nonfinal state. So, this
A does not accept y. Therefore, M ′ rejects y. If y ∈ L: Towards a contradiction,
suppose M ′ rejects y. Then some component A∗ does not accept y. By (2.3), A∗(y) 6=
⊥. Hence, A∗(y) is a state, call it q∗, and is nonfinal. Thus, at some point, our method
marked q∗. Let ŷ 6∈ L be the string examined at that point. Then, the selected A
was A∗ and A(ŷ) was q∗, and thus no ỹ ∈ L had A∗(ỹ) = q∗ due to (2.3). But this
contradicts the fact that y ∈ L and A∗(y) = q∗.

Note that Lemma 2.3 is valid also for the empty ∩21dfa M = (∅, ∅). In this
case, M solves Σ∗, since every word is accepted by all components of M . Class F(M)
contains only M . If L 6= Σ∗, any word y /∈ L confuses M on L, since every component
of M (vacuously, since there is no such component) treats it identically to some word
in L. Conversely, if some y confuses M on L, y /∈ L so L 6= Σ∗.

Confusing strings can be used to prove that a certain language is hard for ∩21dfas.
At first we use this technique to propagate hardness from 1d to ∩l1d.

Lemma 2.4. If no 1dfa with at most m states can solve language L, then no ∩l1dfa
with at most m-state components can solve language

∨
L. Similarly for

⊕
L.

Proof. Suppose no m-state 1dfa can solve L. By induction on k, we prove a stronger
claim that every ∩l1dfa with k m-state components is confused on

∨
L by some

well-formed string y, i. e., y ∈ #(Σ∗#)∗. The proof for
⊕
L is similar.

If k = 0: Fix any such ∩l1dfa M = (L, ∅) = (∅, ∅). By definition, # 6∈
∨
L.

Furthermore, # confuses M on
∨
L, because all components of M (vacuously, since

L = ∅) treats it identically to some word in
∨
L. Since # is well-formed, the claim

holds.
If k ≥ 1: Fix any such ∩l1dfa M = (L, ∅). Pick any D ∈ L and remove it from M

to get M1 = (L1, ∅) := (L − {D}, ∅). By the inductive hypothesis, some well-formed
y confuses M1 on

∨
L.

Case 1: y ∈
∨
L. Then some A ∈ L1 hangs on y. Since A ∈ L, too, y confuses M

as well, so the inductive step is complete.
Case 2: y 6∈

∨
L. Then every A ∈ L1 treats y identically to a positive instance:

(∀A ∈ L− {D})(∃ỹ ∈
∨
L)
(
A(y) = A(ỹ)

)
. (2.4)

Now we define a single-component ∩l1dfa M2 = ({D′}, ∅). If D hangs on y (i. e.,
D(y) = ⊥), we define D′ to be a single-state automaton that hangs immediately.
Otherwise, D′ is derived from D by changing its initial state to D(y). In any case, it
holds that D′(z) = D(yz) for any non-empty word z.

26 Chapter 2. Determinism vs. Nondeterminism

By the assumption of the lemma, no member of F(M2) solves L. So, by Lemma 2.3,
some x confuses M2 on L. We claim that yx# confuses M on

∨
L. Since yx# is well-

formed, the induction is again complete. To prove the confusion, we examine cases:
Case 2a: x ∈ L. Then yx# ∈

∨
L, since y is well-formed and x ∈ L. And

D′ hangs on x (since x is confusing for M2 and D′ is the only component), thus
D(yx#) = D′(x#) = ⊥. So, component D of M hangs on yx# ∈

∨
L. So, yx# confuses

M on
∨
L.

Case 2b: x 6∈ L. Then yx# 6∈
∨
L, because y is well-formed and not in

∨
L, and

x does not contain #. And, since x is confusing for M2, D′ treats it identically to
some x̃ ∈ L: D′(x) = D′(x̃). Then, each component of M treats yx# identically to a
positive instance of

∨
L:

• D treats yx# as yx̃# : D(yx̃#) = D′(x̃#) = D′(x#) = D(yx#). And we know
yx̃# ∈

∨
L, because y is well-formed and x̃ ∈ L.

• each A 6= D treats yx# as ỹx#, where ỹ the string guaranteed for A by (2.4):
A(ỹx#) = A(yx#). And we know ỹx# ∈

∨
L, since ỹ ∈

∨
L and x does not

contain #.
Overall, yx# is again a well-formed confusing string for M on

∨
L, as required.

Corollary 2.5. If L /∈ 1d, then
∨
L /∈ ∩l1d and

⊕
L /∈ ∩l1d.

Proof. Assume the contrary, i. e.,
∨
L ∈ ∩l1d. Hence, there is a familyM = (Mn)n≥1

of small ∩l1dfas solving
∨
L, i. e., Mn has at most p(n) states overall for some poly-

nomial p(n). Obviously, Mn has at most p(n) state components, so by Lemma 2.4
there exists a family M′ = (M ′n)n≥1 of 1dfas solving L such that M ′n has at most
p(n) states. Hence, L ∈ 1d, a contradiction. The proof for

⊕
is analogous.

In fact, Lemma 2.4 is stronger than Corollary 2.5, since it proves that even ar-
bitrarily high number of components cannot help to solve L if the components are
small. We discuss the implications of this fact in Section 2.5.

Next, we prove a hardness propagation from ∩l1d to ∩21d.

Lemma 2.6. Let m ≥ 1. If L1 has no ∩l1dfa with at most m states and L2 has no
∩r1dfa with at most m states, then L1 ∨ L2 has no ∩21dfa with at most m states.
Similarly for L1 ⊕ L2.

Proof. Let M = (L,R) be a ∩21dfa with at most m states; we show that M does not
accept L1 ∨L2. By contradiction, assume that M accepts L1 ∨L2. Let M1 := (L′, ∅)
and M2 := (∅,R′) be the ∩21dfas derived from the two ‘sides’ of M after changing
the initial state of each A ∈ L∪R to A(#). Note that we can assume that A(#) 6= ⊥:
Otherwise, A hangs on every well-formed word, hence M accepts an empty language.
This implies that both L1 and L2 are empty, hence they can be accepted by a ∩l1dfa
(a ∩r1dfa) with 1 state; a contradiction.

By the lemma’s assumption, no member of F(M1) solves L1 and no member of
F(M2) solves L2. So, by Lemma 2.3, some y1 confuses M1 on L1 and some y2 confuses
M2 on L2. We claim that #y1#y2# confuses M on L1 ∨ L2 and thus M fails.

2.3. Hardness Propagation 27

Case 1: y1 ∈ L1 or y2 ∈ L2. Assume y1 ∈ L1 (if y2 ∈ L2, we work similarly).
Then #y1#y2# ∈ L1 ∨ L2 and some A′ ∈ L′ hangs on y1. The corresponding A ∈ L
has A(#y1#y2#) = A′(y1#y2#) = ⊥. So, #y1#y2# confuses M on L1 ∨ L2.

Case 2: y1 6∈ L1 and y2 6∈ L2. Then #y1#y2# 6∈ L1 ∨ L2, each component of M1

treats y1 identically to a positive instance of L1, and each component of M2 treats y2

identically to a positive instance of L2:

(∀A′ ∈ L′)(∃ỹ1 ∈ L1)
(
A′(y1) = A′(ỹ1)

)
, (2.5)

(∀A′ ∈ R′)(∃ỹ2 ∈ L2)
(
A′(y2) = A′(ỹ2)

)
. (2.6)

It is then easy to verify that every A ∈ L treats #y1#y2# as #ỹ1#y2# ∈ L1 ∨ L2 (ỹ1 as
guaranteed by (2.5)), and every A ∈ R treats #y1#y2# as #y1#ỹ2# ∈ L1 ∨ L2 (ỹ2 as
guaranteed by (2.6)). Therefore, #y1#y2# confuses M on L1 ∨ L2, again.

The proof for the parity concatenation is analogous. It is necessary, however, to
split Case 1 into two sub-cases:

Case 1a: Either y1 ∈ L1 or y2 ∈ L2. This case is completely analogous to Case 1
of the proof for disjunctive concatenation.

Case 1b: Both y1 ∈ L1 and y2 ∈ L2. Since L2 can not be accepted by a ∩r1dfa
with m ≥ 1 states, it is nontrivial, i. e., there exists some ỹ2 /∈ L2 that does not
contain #. Hence #y1#ỹ2# ∈ L1 ⊕L2 and, by similar arguments as for the disjunctive
concatenation, #y1#ỹ2# confuses M .

Corollary 2.7. If L /∈ ∩l1d, then L ∨ LR /∈ ∩21d and L ⊕ LR /∈ ∩21d.

Proof. Let L = (Ln)n≥1. Assume the contrary, i. e., L ∨ LR ∈ ∩21d. Hence, there
exists a family M = (Mn)n≥1 of small ∩21dfas solving L ∨ LR, i. e., Mn has at most
p(n) states for some polynomial p(n). By Lemma 2.6 there is either a ∩l1dfa ML

n

solving Ln with at most p(n) states, or a ∩r1dfa MR
n solving LR

n with at most p(n)
states. If the second case occurs, we can obtain ML

n solving Ln with at most p(n)
states from MR

n by swapping its left and right components. Hence, there exists a
family M′ = (ML

n)n≥1 of ∩l1dfas solving L such that ML
n has at most p(n) states.

So, L ∈ ∩l1d, a contradiction. Proof for ⊕ is analogous.

Similarly as in the case of Lemma 2.4, Lemma 2.6 can be formulated for automata
with m-state components instead of m-state automata, too.

The following auxiliary lemma is quite simple, and it does not use the idea of con-
fusing strings. Nevertheless, it allows us to construct more elaborate hard languages
out of simpler ones, so we present it for the sake of completeness. Intuitively, it just
shows that concatenation operations do not decrease the hardness of the language.

Lemma 2.8. Let L′ be nontrivial, π ∈ {∩,∪,p}, σ ∈ {l, r,2}. If L has no πσ1dfa
with m-states, then neither L ∧ L′ has. Similarly for L ∨ L′ and L⊕ L′.

28 Chapter 2. Determinism vs. Nondeterminism

Proof. We prove only the first claim, for π = ∩ and σ = l. Fix any y′ ∈ L′. Given
a ∩l1dfa M ′ solving L ∧ L′ with m-states, we build a ∩l1dfa M solving L with m-
states: We just modify each component A′ of M ′ so that the modified A′ works on
y exactly as A′ on #y#y′#. Then, M accepts y ⇔ M ′ accepts #y#y′# ⇔ y ∈ L. The
modifications for proving the other claims are straightforward.

2.3.2 Generic Strings

In this subsection, we proceed to the “upper level” of the hardness propagation. We
show how to propagate hardness from ∩l1dfas to rdfas. Furthermore, we general-
ize these results for sweeping automata, too, showing a hardness propagation from
∩21dfas to sdfas.

Intuition. For the case of rotating automata, our goal is to show that if some
language L is hard for ∩l1dfas, then the language

∧
L is hard for rdfas. Intuitively,

this fact is not very surprising: Language
∧
L consists of arbitrarily many #-delimited

blocks, and the goal of the rdfa is to verify if each of these blocks belongs to L. Since
the rdfa is finite, it can carry only finite information between different traversals.
Obviously, this finite information does not suffice to cover every #-delimited block.
Hence, the rdfa must be able to verify the correctness of every block in several
traversals that do not interact with each other. This corresponds well to the model
of parallel intersection automata: Essentially, the rdfa accepting

∧
L must act as a

∩l1dfa. This leads to the conclusion that if the language
∧
L can be accepted by a

small rdfa, then the language L can be accepted by a small ∩l1dfa.
While the intuition behind this step of hardness propagation is not too difficult,

it is not trivial to formalize it. To do so, the technique of generic strings, which
are a powerful tool for proving lower bounds on the state complexity of rotating and
sweeping automata, was introduced in [Sip80b]. In fact, the results presented in this
subsection refine the results of [Sip80b] by explicitly separating the two steps of hard-
ness propagation. While this is not a significant contribution by itself, it simplifies
the analysis of the complexity classes of finite automata, allows us to separate non-
determinism and self-verifying nondeterminism for rotating and sweeping automata,
and opens the way for the generalization of the generic strings for time-bounded
randomized models of finite automata.

Formal proof. The rest of this subsection is devoted to the formalization of the
above-described intuitive approach. Let A be a 1dfa over alphabet Σ and states Q,
and y, z ∈ Σ∗. The left views of A on y is the set of states reached on the right
boundary of y by left computations of A:

lviewsA(y) := {q ∈ Q | (∃p ∈ Q)[lcompA,p(y) results in q]}.

The (left) mapping of A on y and z is the partial function

lmapA(y, z) : lviewsA(y)→ Q

2.3. Hardness Propagation 29

Q

lviewsA(y)

lmapA(y, z)

lviewsA(yz)

zy

Figure 2.2: lviews and lmap.

which, for every q ∈ lviewsA(y), is defined only if lcompA,q(z) does not hang and,
if so, returns the state that this computation results in. (See Figure 2.2.)

It is straightforward to verify that this function is a partial surjection from the
set lviewsA(y) to the set lviewsA(yz). First, the values of lmapA(y, z) are all in
lviewsA(yz). Indeed: Let r be a value of lmapA(y, z). Then some q ∈ lviewsA(y)
is such that lmapA(y, z)(q) = r. Since q ∈ lviewsA(y), we know some c :=
lcompA,p(y) results in q. Since lmapA(y, z)(q) = r, we know d := lcompA,q(z) re-
sults in r. Overall, the computation lcompA,p(yz) must be exactly the concatenation
of c and d. So, it results in the same state as d, namely r. Therefore r ∈ lviewsA(yz).

Second, the values of lmapA(y, z) cover the entire lviewsA(yz). Indeed: Suppose
r ∈ lviewsA(yz). Then some c′ := lcompA,p(yz) results in r. Let q be the state of c′

right after crossing the y-z boundary. Clearly, (i) the computation lcompA,p(y) re-
sults in q, and (ii) the computation lcompA,q(z) results in the same state as c′, namely
r. By (i), we know that q ∈ lviewsA(y). By (ii), we know that lmapA(y, z)(q) = r.
Therefore, r is a value of lmapA(y, z).

Therefore, lmapA(y, z) partially surjects lviewsA(y) onto lviewsA(yz). This
immediately implies Fact 2.1. Fact 2.2 is equally simple.

Fact 2.1. For all A, y, z as above: |lviewsA(y)| ≥ |lviewsA(yz)|.

Fact 2.2. For all A, y, z as above: lviewsA(yz) ⊆ lviewsA(z).

Proof. Suppose r ∈ lviewsA(yz). Then some computation c := lcompA,p(yz) results
in r. If q is the state of c after crossing the y-z boundary, then lcompA,q(z) is a suffix
of c and results in r. So, r ∈ lviewsA(z).

In the following, we are going to prove that if there is no small ∩l1dfa solving L,
then there is no small pl1dfa solving

∧
L. Using this result, we can easily obtain the

hardness propagation from ∩l1dfas to rdfas, since, due to Lemma 2.2, pl1dfas are
at least as strong as rdfas. Hence, we prove a stronger result of hardness propaga-
tion from ∩l1dfas to pl1dfas, but we are not dealing with the complexity classes of
pl1dfas. We provide, however, some discussion about those classes in Section 2.5.

30 Chapter 2. Determinism vs. Nondeterminism

Consider any pl1dfa M = (L, ∅, F) and any language L. We say that uu′ ∈ L is a
right-extension of u ∈ L. A string y ∈ L is called l-generic (for M) over L, if the size
of lviewsA(y) cannot be decreased by any right-extension of y for any component
A ∈ L:

y ∈ L and (∀yz ∈ L)(∀A ∈ L)
(
|lviewsA(y)| = |lviewsA(yz)|

)
(2.7)

Note that we can use equality in (2.7) due to Fact 2.1.
It is easy to see that l-generic strings always exist: Consider y ∈ L such that∑

A∈L

|lviewsA(y)|

is minimal possible. For any yz ∈ L, Fact 2.1 ensures that no component of the sum
is increased. Since the sum cannot be decreased by the definition of y, string y is
l-generic.

The next lemma shows an important property of l-generic strings. Intuitively,
it shows that the behavior of the parallel automaton is very limited after reading a
generic string. Later we exploit this limitation to build a small ∩l1dfa for language
L from a small pl1dfa accepting

∧
L.

Lemma 2.9. Suppose a pl1dfa M = (L, ∅, F) solves
∧
L and y is l-generic for M

over
∧
L. Then, x ∈ L iff lmapA(y, xy) is total and injective for all A ∈ L.

Proof. [⇒] Let x ∈ L. Then yxy ∈
∧
L, because y ∈

∧
L and x ∈ L. So, yxy is a

right-extension of y inside
∧
L. Since y is l-generic, |lviewsA(y)| = |lviewsA(yxy)|,

for all A ∈ L. Hence, each partial surjection lmapA(y, xy) has domain and codomain
of the same size. This is possible only if the function is a bijection, i. e., it is both
total and injective.

[⇐] Suppose that, for each A ∈ L, the partial surjection lmapA(y, xy) is total
and injective. Then it bijects the set lviewsA(y) into the set lviewsA(yxy), which is
actually a subset of lviewsA(y) (Fact 2.2). Clearly, this is possible only if this subset
is the set itself. Hence, lmapA(y, xy) is a permutation πA of lviewsA(y).

Now pick k ≥ 1 such that each πkA is an identity for each A. Clearly, it is always
possible to find such k; for example, it is sufficient to choose k = m!, where m is the
maximal number of states over all components of L. Let z := y(xy)k. It is easy to
verify that lmapA

(
y, (xy)k

)
equals lmapA(y, xy)k = πkA, and is therefore the identity

on lviewsA(y). This means that, reading through z, the left computations of A do
not notice the suffix (xy)k to the right of the prefix y. So, no A can distinguish
between y and z: it either hangs on both or results both in the same state.

To show this more formally, suppose A accepts z = y(xy)k and let

c := lcompA,p
(
y(xy)k

)
be its computation, where p is its initial state. Then c results in a final state r. Easily,
c can be split into subcomputations c′ := lcompA,p(y), which results in some state

2.3. Hardness Propagation 31

q, and c′′ := lcompA,q
(
(xy)k

)
, which results in r. By the selection of q and r and

the fact that πkA is an identity, we know

r = lmapA
(
y, (xy)k

)
(q) = πkA(q) = q.

Hence, c results z = y(xy)k in the same state in which c′ results y. (Intuitively, in
reading (xy)k to the right of y, the full computation c achieves nothing more than
what is already achieved on y by its prefix c′.) Since r is final, A accepts y.

Conversely, any accepting computation of A on y can be extended into an accepting
computation on z – this time by pumping up (as opposed to pumping down) and by
using the computations that cause πkA to be an identity.

Thus, M does not distinguish between y and z, either: it either accepts both or
rejects both. But M accepts y (because y ∈

∧
L), so it accepts z. Hence, every

#-delimited block of z is in L. In particular, x ∈ L.

If M = (L,R, F) is a p21dfa, we can also work symmetrically with right compu-
tations and left-extensions: we can define rviewsA(y) and rmapA(z, y) for A ∈ R,
derive Facts 2.1, 2.2 for rviewsA(y) and rviewsA(zy), and define r-generic strings.
In particular, rviewsA(y) is the set of states of A reached on the left boundary of
y after reading it backwards and rmapA(z, y) is the function that maps states of
rviewsA(y) into the states reached after reading z backwards. We can then con-
struct strings that are simultaneously l- and r-generic; we call such strings generic.
Indeed, it is easy to verify that if yL# is l-generic over

∧
L and #yR is r-generic over∧

L, then yL#yR is a generic string over
∧
L.

Generic strings can be used to extend Lemma 2.9 for p21dfas. The following
lemma can be proved by a straightforward extension of the proof of Lemma 2.9:

Lemma 2.10. Suppose a p21dfa M = (L,R, F) solves
∧
L and y is generic for M

over
∧
L. Then, x ∈ L iff lmapA(y, xy) is total and injective for all A ∈ L and

rmapA(yx, y) is total and injective for all A ∈ R.

Now we can use the properties of generic strings to prove hardness propagation
from ∩l1d to rd. The following lemma proves a stronger result of hardness propaga-
tion from ∩l1dfas to pl1dfas; the actual hardness propagation to rd is stated as the
following corollary.

Lemma 2.11. If L has no ∩l1dfa with at most k ·
(
m
2

)
components of at most

(
m
2

)
states each, then

∧
L has no pl1dfa with at most k components of at most m states

each.

Proof. Let M = (L, ∅, F) be a pl1dfa solving
∧
L with at most k components of at

most m states each. Let y be l-generic for M over
∧
L. We build a ∩l1dfa M ′

solving L.
By Lemma 2.9, an arbitrary x is in L iff lmapA(y, xy) is total and injective for

all A ∈ L; i. e., iff for all A ∈ L and every two distinct p, q ∈ lviewsA(y),

lcompA,p(xy) and lcompA,q(xy) result xy into different states. (2.8)

32 Chapter 2. Determinism vs. Nondeterminism

So, checking x ∈ L reduces to checking (2.8) for each A and two-set of states of
lviewsA(y). The components of M ′ perform exactly these checks. To describe them,
let us first define the following relation on the states of an A ∈ L:

r �A s ⇐⇒ lcompA,r(y) and lcompA,s(y) result y into different states,

and restate our checks as follows: for all A ∈ L and all distinct p, q ∈ lviewsA(y),

lcompA,p(x) and lcompA,q(x) result x into states that relate under �A. (2.8′)

Now, building 1dfas to perform these checks is easy. For each A ∈ L and p, q ∈
lviewsA(y), the corresponding 1dfa has 1 state for each two-set of states of A. The
initial state is {p, q}. At each step, the automaton applies A’s transition function on
the current symbol and each state in the current two-set. If either application returns
no value or both return the same value, it hangs; otherwise, it moves to the resulting
two-set. A state {r, s} is final iff r �A s.

Since for every A ∈ L we constructed at most
(
m
2

)
components of M ′, each with

at most
(
m
2

)
states, the proof is completed.

Corollary 2.12. If L /∈ ∩l1d, then
∧
L /∈ rd.

Proof. Let L = (Ln)n≥1. Assume the contrary, i. e.,
∧
L ∈ rd. Hence, there is a

family M = (Mn)n≥1 of small rdfas solving
∧
L, i. e., Mn has at most p(n) states

for some polynomial p(n). By Lemma 2.2, there is a pl1dfa M ′n with at most p(n)
components of at most p(n) states each such that M ′n is equivalent to Mn. By
Lemma 2.11, there is a ∩l1dfa M ′′n solving Ln with at most p(n)

(
p(n)

2

)
components of

at most
(
p(n)

2

)
states each. Hence, there exists a small familyM′′ = (M ′′n) of ∩l1dfas

solving L, a contradiction.

Hardness propagation from ∩21d to sd is analogous to Lemma 2.11 and Corol-
lary 2.12. The proof is very similar to the case of rotating automata; rcomp and
rviews are used similarly as lcomp and lviews.

Lemma 2.13. If L has no ∩21dfa with at most k ·
(
m
2

)
components of at most

(
m
2

)
states each, then

∧
L has no p21dfa with at most k components of at most m states

each.

Corollary 2.14. If L /∈ ∩21d, then
∧
L /∈ sd.

To conclude this subsection, we provide an overview of the presented hardness
propagation lemmas in Figure 2.3.

2.4. Map of the Complexity Classes 33

1d ∩l1d

∩21d sd

rd
Corollary 2.5 Corollary 2.12

Corollary 2.14

Corollary 2.7

Figure 2.3: The structure of the hardness propagation lemmas.

2.4 Map of the Complexity Classes

In this section, we explore the relationship between the complexity classes of finite
automata introduced so far. In particular, we present a complete map of relationships
between these classes. We, however, analyze their closure properties before filling the
map. We do this for the following reason: Positive closure properties help us to
collapse many complexity classes, what simplifies the map of the classes significantly.
Furthermore, we need these properties for finding language families witnessing the
separation of the classes when using the hardness propagation technique.

1

2

3

4

5

6

7

8
LW
V
∧
∨
⊕

·R

∪l1d1n1∆1d

+

−
+

+

+

+

+

+

+

+

+

+

−
+

+

+

−

−

−

+

+

−
−
+

−
+ +

++

+

A B C D E F G H H I J K

s∆∪21drd

+

−

+

?

−
+

−

−

+

+

+

+

+

−
−
?

+

+

+

+

+

−
− −

+

+

+ −
+

2n2∆2dsn

−
+

+

+

+

+

+

+

+

+

+

+

+

+

?

+

+

+

+

+

+

+

+

+ +

+

sd

+

−

?

?

−

−?

?

? ?

?

·

Figure 2.4: Closure properties: ‘+’ means closure; ‘-’ means non-closure; ‘?’ means
we do not know.

At first, we focus on the positive closure properties mentioned in Figure 2.4. In
the next sections, we use them to simplify the map of complexity classes by collapsing
some classes, as well as to separate the remaining classes by hardness propagation.
Last section is devoted to the proofs of the negative closure properties.

Note that we have omitted some of the introduced complexity classes from Fig-
ure 2.4, namely r∆, rn, ∪r1d, ∩l1d, ∩r1d, and ∩21d. Nevertheless, the closure proper-
ties of all these classes follow easily from the closure properties presented in Figure 2.4:
As we show later, it holds that r∆ = s∆ and rn = sn. Furthermore, the closure prop-
erties of any class co-C and re-C are related to the closure properties of C, as described
by the following observations and lemmas. Due to Lemma 2.2, the closure properties
of the omitted classes of parallel automata follow.

34 Chapter 2. Determinism vs. Nondeterminism

The following observation is a straightforward corollary of Observation 2.1:

Observation 2.2. Let O be any operator used in Figure 2.4, and C any class of
language families. Then re-C is closed under O iff C is closed under O.

Lemma 2.15. Let C be any class used in Figure 2.4. If C is closed under ⊕ or
⊕

,
then C is closed under complement.

Proof. Fix a class C of language families solvable by small families of Xfas, where
X represents any automata model corresponding to the classes in Figure 2.4, and
assume that C is closed under

⊕
. Let L = {Ln}n≥1 ∈ C. The language family

⊕
L

is solvable by a family M = {Mn}n≥1 of small Xfas. We need to prove that L ∈ C,
i. e., to find a small family M′ = {M ′n}n≥1 of Xfas solving {Ln}n≥1.

Now we discuss how to construct automaton M ′n solving Ln from automaton Mn

solving
⊕
Ln. The case of Ln = ∅ is trivial, so assume that Ln is not empty and

fix some w ∈ Ln. Easily, for any word u it holds that u /∈ Ln iff #w#u# ∈
⊕
Ln.

Hence, it is sufficient that M ′n, given an input u, simulates Mn on input #w#u#.
I. e., automaton M ′n simulates Mn on every symbol of the input word except on
the endmarkers. On `, M ′n simulates the behavior of M on `#w# and on a, M ′n
simulates M on #a. It is straightforward to verify that such a simulation is possible
for all considered models of automata by adding only a constant number of new states
(in case of parallel automata, a constant number of new states in each component).
Hence, this construction transforms k-state automata into O(k) state automata, and
thus the resulting automata family M′ is small.

The proof for ⊕ is analogous; it is sufficient to consider family L ⊕ L instead of⊕
L.

Lemma 2.16. Let C be any class used in Figure 2.4. Class co-C is closed under ·
(·R, ∧, ∨, ⊕,

∧
,
∨

,
⊕

) iff C is closed under · (·R, ∨, ∧, ⊕,
∨

,
∧

,
⊕

), respectively.

Proof. The claim for the complement is trivial. The claim for ·R follows directly from
Observation 2.1. The claim for ∧, ∨,

∧
, and

∨
follows from Lemma 2.1, and the fact

that all classes in Figure 2.4 are closed under union and intersection with any language
family from 1d, what is not difficult to verify by straightforward constructions.

If C is closed under ⊕ (
⊕

), Lemma 2.15 implies that C = co-C. Hence co-C is also
closed under ⊕ (

⊕
), respectively. The same argument can be used to show that if

co-C is closed under ⊕ (
⊕

), so is C.

2.4.1 Positive Closure Properties

All of the positive closure properties in Figure 2.4 can be either proven by straightfor-
ward constructions or were proven before. Since none of these constructions is hard,
we describe only the main ideas.

2.4. Map of the Complexity Classes 35

Complement. At first we focus on the closures under complement, i. e., row 1
of Figure 2.4. Obviously, any self-verifying class is closed under complement. The
closure of 2d under complement was proven in [Sip78] and (an improved construction)
[GMP07]. The proof of closure of 1d under complement is very easy – it is sufficient
to make all non-final states final and vice versa.

It is not difficult to see that any rotating or sweeping automaton can be modified
into an equivalent one that avoids infinite runs: Indeed, any computation of a rdfa
(sdfa) with k states consists of at most k (left) traversals. For the case of nondeter-
ministic automata, a shortest accepting computation (if there exists some) consists of
at most k (left) traversals. Hence, the modified automaton can count the number of
traversals and terminate after reaching the upper limit. Since a k-state automaton is
transformed into an O(k2)-state one, a small family of automata is transformed into
a small family.

The closure of rd and sd under complement follows by straightforward negation
of the answer of the corresponding automaton that avoids infinite runs.

Reverse. Easily, any k-state two-way automaton accepting language L can be trans-
formed into a (k + 1)-state automaton of the same kind accepting language LR: at
first the new automaton moves its head to the right endmarker, and then simulates
the original automaton with swapped directions of moves.

A similar construction works for sweeping automata: In the first traversal, the
head is moved to the right endmarker, then the original automaton is simulated. For
a two-sided parallel automaton M = (L,R, F), it is enough to swap L with R.

It is well known that 1n is closed under reverse. Here, the core idea is that a 1nfa
“guesses” the computation of the simulated automaton backwards and, in every step,
verifies if the guess is correct. For the model of 1nfas without endmarkers, it has
been proven in [HK03, Jir05] that any 1nfa with n states accepting language L can
be converted into a 1nfa with n+ 1 states accepting LR and that this bound is tight.
It is, however, not difficult to check that, in our model of one-way automata (i. e.,
the model with endmarkers), any 1nfa can be reversed with no increase in the state
complexity.

The closure of 1∆ under complement follows from the closure of 1n and Observa-
tion 2.1.

Parallel Automata. It is not difficult to check that parallel union automata are
closed under both ∨ and

∨
. Indeed, if M1 and M2 are parallel union automata

for languages L1, L2, we can modify all components of M1 to consider only the left
#-delimited block and all components of M2 to consider only the right #-delimited
block. Afterwards, the union of all components of M1 and M2 forms the automaton
for L1 ∨L2. For

∨
L1, it is sufficient to modify every component of M1 to work on all

#-delimited blocks separately and exit into the final state iff the original component
exited into the final state on at least one block.

36 Chapter 2. Determinism vs. Nondeterminism

Proving that ∪l1d is closed under ∧ is only slightly more involved. Let M1 =
(L1, ∅, F1) and M2 = (L2, ∅, F2) be ∪l1dfas with at most k states accepting languages
L1, L2. We construct a ∪l1dfa M ′ accepting language L1 ∧ L2 with at most k2

components, each with O(k) states: for every pair C1 ∈ L1, C2 ∈ L2, there is one
component D of M ′ that simulates C1 on the first #-delimited block of input word and
C2 on the second one. Component D exits into a final state iff both C1 and C2 do.
It is easy to see that D can be constructed with O(k) states. Furthermore, for every
x ∈ L1 and y ∈ L2, some component of M ′ accepts #x#y#: the component consisting
of C1 ∈ L1 accepting x and C2 ∈ L2 accepting y does. On the other hand, if some
component of M ′ accepts #x#y#, then x ∈ L1 and y ∈ L2. Hence, the construction is
correct.

Remaining Closure Properties. It remains to show positive closure properties of
rows 3–8, columns A–C,E,G–K of Figure 2.4, i. e., the closure properties of one-way,
rotating, sweeping and two-way automata under ∧, ∨, ⊕,

∧
,
∨

,
⊕

.
All these properties can be proved using straightforward constructions based on

the same idea: The newly constructed automaton simulates the original automaton
on each #-delimited block of the input word separately, and decides according to the
results of this simulation. To do so, the new automaton needs enough movement
power.

It is easy to see that both one-way and two-way automata can simulate automata of
the same type on each #-delimited block of the input word, regardless of the number
of such blocks. Rotating and sweeping automata, however, are not able to do so
for inputs consisting of many blocks, since they cannot “remember” the position of
the processed block and return to it in another traversal. Nevertheless, if the input
consists of two blocks only, they are able to simulate another automaton on the left (or
right) block only. Hence, rotating and sweeping automata have sufficient movement
power for proving closures of ∧, ∨, and ⊕ only, while one-way and two-way automata
have sufficient power also for

∧
,
∨

, and
⊕

.
The ability to simulate an automaton of the same kind on each #-delimited block

is enough to prove positive closure properties at rows 3,6 and columns A–C,E,G–K in
Figure 2.4, i. e., the closure properties related to ∧ and

∧
. The same technique can

be applied in a straightforward way for properties related to ∨ and
∨

if the simulated
automaton never reaches an infinite loop. Infinite loops can be always avoided with
polynomial blowup in state complexity for one-way automata (trivially), rotating and
sweeping automata (as we have discussed in the paragraph about the complement),
as well as for two-way deterministic automata [Sip78]. In this way, it is possible
to obtain a proof for positive closure properties at rows 4,7 and columns A–C,E,G–
I in Figure 2.4. Hence, only the case of 2n and 2∆ remains to be considered: A
2nfa accepting

∧
L can nondeterministically choose one block of the input word and

simulate the corresponding 2nfa accepting L. Here, a possible infinite loop of the
simulated machine does not pose a problem. A two-way self-verifying automaton
accepting

∧
L can either verify that the input word is in the accepted language in the

2.4. Map of the Complexity Classes 37

same way as 2nfa, or verify that the word is not in the language in the same way as
a 2nfa for

∧
L. An analogous construction works also for L1 ∧ L2.

To use our technique for closure properties under ⊕ and
⊕

, the new automaton
needs the ability to negate the answer of the simulated automaton. This is trivial for
deterministic classes and can be done easily for all classes closed under complement:
the new automaton simulates both the original automaton and the complemented
original automaton on every block. It is not difficult to see that the possibility of
infinite loops does not pose a problem for two-way self-verifying automata, since the
new automaton can, for every block of the input, nondeterministically guess if this
block is in the corresponding language and verify this guess by running the simulated
machine. Hence, the closure properties in row 5,8 and columns A–C,E,G–K are
correct, too.

2.4.2 Collapsing Classes

Now we are ready to augment the map in Figure 1.5 with complements and reverses
of all of the classes and draw a new map with collapsed classes. To do so, we use the
positive closure properties in Figure 2.4: 1n = re-1n, 1∆ = co-1∆ = re-1∆, 1d = co-1d,
rd = co-rd, sd = co-sd = re-sd, s∆ = co-s∆ = re-s∆, sn = re-sn, 2d = co-2d =
re-2d, 2∆ = co-2∆ = re-2∆, and 2n = re-2n. Furthermore, we use the following lemma
to show that r∆ = s∆ and rn = sn.

Lemma 2.17. Let M = (qs, δ, qa) be a snfa over a set of k states Q solving language
L over alphabet Σ. Then there exists an O(k3)-state rnfa M ′ solving L.

Proof. We construct M ′ in the following way: every left-to-right traversal of M is
simulated by M ′ in a straightforward way. To simulate a right-to-left traversal of
M , automaton M ′ guesses the computation of M backwards, in a similar way as in
the proof that 1n is closed under reverse. While doing so, M ′ needs to remember the
starting state of the right-to-left traversal (which is checked at the end of the traversal
simulation), and the guessed last state of the right-to-left traversal (from which the
next left-to-right traversal is started).

More formally, M ′ = (qs, δ′, qa) is an automaton over set of states

Q′ = {q, (qR, q, qL) | q, qL, qR ∈ Q}

such that δ′ is defined as follows:

δ′(q, a) = δ(q, a) ∀a ∈ {`} ∪Σ
δ′(q,a) 3 qa ⇔ δ(q,a) 3 qa
δ′(q,a) 3 (q, q′, q′) ∀q, q′ ∈ Q

δ′((q, w, q′), a) 3 (q, w′, q′) ⇔ δ(w′, a) 3 w, a ∈ Σ
δ′((q, w, q′),a) = δ(q′,`) ⇔ δ(q,a) 3 w
δ′((q, w, q′),a) = ∅ otherwise

States from Q are used for simulation of left-to-right traversals. At the end of the
traversal, the current state is saved as the first component of the state (q, q′, q′), and

38 Chapter 2. Determinism vs. Nondeterminism

the state at the end of the right-to-left traversal q′ is guessed nondeterministically.
Afterwards, the computation of M is guessed nondeterministically backwards. Hence,
lcompM ′,(q,q′,q′)(z) can exit into (q, w, q′) if and only if rcompM,w(z) can exit into
q′. So, M ′ can avoid hanging at a iff M could traverse the input word from right
to left starting at state q, continuing with w, and exiting into q′. In that case, M ′

simulates movement of M ′ on ` and continues with the simulation of a left-to-right
traversal.

Combination of the above-mentioned results yields the map of the complexity
classes depicted in Figure 2.5. It is possible to add the classes of union and intersection
parallel automata to the figure, too. Nevertheless, for the sake of clarity we present
them separately in Figure 2.6, which “zooms” into these classes.

r∆=co-r∆=re-r∆=s∆=co-s∆=re-s∆

sd=co-sd=re-sd

rn=re-rn=sn=re-sn 2n=re-2n

co-rn=co-sn co-2n

1n=re-1n

co-1n

2∆=co-2∆=re-2∆

rd=co-rd 2d=co-2d=re-2d

1∆=co-1∆=re-1∆

1d=co-1d

re-rdre-1d

Figure 2.5: Complexity classes of finite automata. An arrow C → C′ means that
C ⊆ C′.

In fact, Figure 2.6 augments Figure 2.1 with the relationships to the classes of
one-way automata: Since 1d is closed under complement and every 1dfa is a special
case of a 1nfa, we have that 1d ⊆ 1∆. Furthermore, it is easy to see that ∪21d ⊆ 1n:
Any ∪21dfa can be simulated by a 1nfa that nondeterministically selects one of the
components of the parallel automaton and simulates it. Because every 1dfa is also
a 1nfa and every 1nfa can be reversed without any increase of the state complexity,
this construction transforms a small family of ∪21dfas into a small family of 1nfas.
The remaining relationships added in Figure 2.6 follows from Observation 1.1, because
1∆ is closed under complement.

2.4.3 Separating Classes

In this section, we provide results separating the state-complexity classes of finite
automata. More precisely, we prove the results displayed in Figure 2.8. As we show
later, these separations allow us to compare any two classes in Figures 2.5 and 2.6
except for those corresponding to two-way automata.

2.4. Map of the Complexity Classes 39

1∆

1d

re-1d

∪21d

∩21d

sd 2d

∪l1d

∪r1d

∩r1d

∩l1d

1n

co-1n

rd

re-rd

Figure 2.6: Complexity classes of finite automata, zoom to the parallel automata
classes. An arrow C→ C′ means that C ⊆ C′. Note that all complements and reverses
of classes corresponding to parallel automata are already included in the map due to
Lemma 2.2.

Theorem 2.18. Let C1, C2 be any two classes among those in Figures 2.5, 2.6 distinct
from those corresponding to two-way automata. Then C1 (C2 iff there exists a path
from C1 to C2 in Figures 2.5, 2.6. Otherwise, C1 and C2 are incomparable.

1∆

1d

re-1d

∩21d

rd

sd 2d

∪l1d

∩l1d

1n

s∆

co-sn

sn

Figure 2.7: Separations of the complexity classes. An arrow C → C′ means that
C 6⊇ C′.

To prove Theorem 2.18, we use the separation results depicted in Figure 2.7. We
prove several of them using the technique of hardness propagation on a core language
family J = (Jn)n≥1 defined as

Jn := {αi | α ⊆ [n] and i ∈ α}, (2.9)

40 Chapter 2. Determinism vs. Nondeterminism

where [n] := {1, . . . , n}. The basic membership properties of J are stated in the
following lemma:

Lemma 2.19. J := (Jn)n≥1 is not in 1d but is in re-1d, 1n, co-1n, ∩l1d, ∪l1d.

Proof. Any 1dfa solving Jn needs at least 2n states: Let M be any 1dfa solving Jn.
It is easy to verify that if M is in the initial state and reads symbol α ⊆ [n], then the
state reached by M must be different for every α.

On the other hand, it is not difficult to verify that Jn can be solved by a 1nfa
with n+ 2 states, by a ∩l1dfa with n components of 4 states each, and by a ∪l1dfa
with n components of 4 states each. Also, (Jn)R can be solved by a 1dfa with n+ 2
states and ¬Jn can be solved by a 1nfa with n+ 2 states.

Now we are ready to prove all results in Figure 2.7:

Lemma 2.20. All facts in Figure 2.7 are correct.

Proof. • rd 6⊇ re-1d: L :=
∧∨
J is the witness. Due to Lemma 2.19, J /∈ 1d,

so Corollary 2.5 yields that
∨
J /∈ ∩l1d and Corollary 2.12 ensures that L =∧∨

J /∈ rd. Since J R ∈ 1d (Lemma 2.19),
∨
J R ∈ 1d (A7 of Figure 2.4), hence

A6 of Figure 2.4 yields that
∧∨
J R ∈ 1d and, due to Observation 2.1, L ∈ re-1d.

• ∩21d 6⊇ ∪l1d: L := (
∨
J) ∨ (

∨
J)R is the witness. Since

∨
J /∈ ∩l1d, applying

Corollary 2.7 yields that L /∈ ∩21d. Since L = (
∨
J)∨ (

∨
J R) (Observation 2.1),

J R ∈ 1d ⊆ ∪l1d (Lemma 2.19, Figure 2.6), and J ∈ ∪l1d (Lemma 2.19), D7

and D4 of Figure 2.4 yields that L ∈ ∪l1d.
• sd 6⊇ 1∆: L :=

∧(
(
∨
J) ∨ (

∨
J)R

)
is the witness. Since (

∨
J) ∨ (

∨
J)R /∈

∩21d, applying Corollary 2.14 yields that L /∈ sd. Since (
∨
J) ∨ (

∨
J)R ∈

∪l1d ⊆ 1n, C6 of Figure 2.4 yields that L ∈ 1n. It remains to show that
L ∈ co-1n. Since 1n is closed under union and intersection with any family from
1d, we can use Lemma 2.19, Lemma 2.1, Observation 2.1, and C2, C3, C6, C7

of Figure 2.4 to derive the following: J ∈ 1n,
∧
J ∈ 1n,

∨
J ∈ 1n,

∨
J

R

∈ 1n,∨
J R ∈ 1n,

∨
J ∧

∨
J R ∈ 1n, (

∨
J) ∨ (

∨
J R) ∈ 1n,

∨
(
∨
J) ∨ (

∨
J R) ∈ 1n,

L =
∧

((
∨
J) ∨ (

∨
J R)) ∈ 1n.

• 1n 6⊇ ∩l1d: Language family D = (Dn)n≥1, representing the disjointness prob-
lem, defined as

Dn = {αβ | α, β ⊆ [n], α ∩ β = ∅}, (2.10)

witnesses this separation. To prove that any 1nfa M solving Dn needs at least
2n states, consider accepting computations of M on words from the set {αα},
where α ⊆ [n] and α = [n]−α. If M has less than 2n states, there exist α1 6= α2

such that M is in the same state when reading the second symbol of the word
α1α1 and of the word α2α2. Without loss of generality, we may assume that α1

and α2 differ in element x, more precisely that x ∈ α1 and x /∈ α2. Then M
accepts the word α1α2, which is a contradiction, since x ∈ α1∩α2. Furthermore,
it is not difficult to construct a ∩l1dfa with n components of 4 states each that
solves Jn: for each i ∈ [n], there is one component that verifies if i /∈ α or i /∈ β
for the input word αβ.

2.4. Map of the Complexity Classes 41

• s∆ 6⊇ sn: Since s∆ is closed under complement and sn is not [Kap06], s∆ 6= sn.
Since s∆ ⊆ sn, the claim follows.

• co-sn 6⊇ 1n: Proven in [Kap06].
• sn 6⊇ 2d: Proven in [Kap06].

The claim of Theorem 2.18 easily follows from the results gathered in Figures 2.5,
2.6, and 2.8:

1∆

1d

re-1d

∪21d

∩21d

∪l1d

∪r1d

∩r1d

∩l1d

rd

sd 2d

1n

co-1n

re-rd

s∆

co-sn

sn

Figure 2.8: Separations of complexity classes, all relationships. An arrow C → C′

means that C 6⊇ C′.

Proof of Theorem 2.18. All separations in Figure 2.8 follows easily from those in Fig-
ure 2.7 using Observation 1.1(5, 6).

Any two classes of one-way, parallel, rotating and sweeping automata considered
in the claim of Theorem 2.18 can be compared using the facts in Figures 2.5, 2.6, and
2.8, using Observation 1.1(7).

For example, to prove that 1n and ∩r1d are incomparable, we have that ∩r1d ⊆
∩21d ⊆ sd 6⊇ 1∆ ⊆ 1n, and 1n 6⊇ ∩r1d. Any other relationship can be proven in a
similar way.

So far, we have proven a complete characterization of the relationship of all in-
troduced complexity classes, except of those corresponding to the two-way automata.
Nevertheless, using the same arguments as in the proof of Theorem 2.18, it is possible
to derive a separation between two-way and sweeping automata: sd (2d, s∆ (2∆,
and sn (2n.

2.4.4 Negative Closure Properties

In this section, we prove the correctness of all negative closure properties claimed in
Figure 2.4.

42 Chapter 2. Determinism vs. Nondeterminism

Reverse and Complement. All negative closure properties under reverse and
complement follow directly from Theorem 2.18.

Parity Operators. All negative closure properties under ⊕ and
⊕

(i. e., at rows
5,8 of Figure 2.4) follow easily from the negative closure properties under complement.
Indeed, Lemma 2.15 implies that any considered class of finite automata that is not
closed under complement is not closed neither under ⊕ nor under

⊕
.

Remaining Properties. The remaining properties are easy to prove by using pre-
vious results:

• F6: Due to Theorem 2.18, there exists L ∈ ∪21d−∩21d. Corollary 2.14 yields that∧
L /∈ sd, hence

∧
L /∈ ∪21d.

• D6: Due to Lemma 2.16 and Lemma 2.2, this is equivalent to proving that ∩l1d
is not closed under

∨
. Due to Theorem 2.18, there exist L ∈ ∩l1d − 1d.

Corollary 2.5 yields that
∨
L /∈ ∩l1d.

• F3: For similar reasons as in D6, it is sufficient to prove that ∩21d is not closed
under ∨. Due to Theorem 2.18, there exist L ∈ ∩21d − ∩l1d. Since ∩21d is
closed under reverse, LR ∈ ∩21d. Due to Corollary 2.7, L ∨ LR /∈ ∩21d.

• E6, G6: Due to Theorem 2.18, there exist L ∈ rd − ∩l1d (L ∈ sd − ∩21d), re-
spectively. Due to Corollary 2.12 (2.14), it holds that

∧
L /∈ rd (

∧
L /∈ sd),

respectively.

• E7, G7: Since rd and sd are closed under complement, the claim follows from E6,
G6 and Lemma 2.16.

2.5 Parallel Automata Classes

It is possible to define classes of language families recognized by small families of gen-
eral parallel automata (pl1dfas, pr1dfas, p21dfas). Following our naming convention,
we denote these classes as pl1d, pr1d, and p21d.

Up to now, we have not discussed these complexity classes, even though we have
provided results about complexity of general parallel automata (lower bounds in
Lemma 2.11 and Lemma 2.13). The reason for this is that the complexity classes
of general parallel automata are rather unnatural from our point of view: Consider a
parallel automaton M with k components of at most m states each. The description
of such an automaton contains the set of accepting k-tuples of M , and this set can
be an arbitrary subset of all mk possible tuples. Hence, it might be necessary to
use exponential number of bits to describe a small automaton. E. g., if m = k, the
automaton has only m2 states, but it is necessary to use mm bits to describe the set
of accepting tuples.

2.5. Parallel Automata Classes 43

The descriptional complexity of general parallel automata can be exponential in
the number of states. This holds even if we consider only automata over the binary
alphabet. Hence, it is not surprising that the complexity classes of these automata
do not fit nicely into the map we have presented in this chapter. On one hand, it
is possible to prove that pl1d 6⊇ re-1d and p21d 6⊇ 1∆. The proof goes in the same
way as the proof of rd 6⊇ re-1d and sd 6⊇ 1∆ in Lemma 2.20; this is possible because
Corollary 2.12 and Corollary 2.14 can be formulated for classes pl1d and p21d, too.
On the other hand, pl1dfas can be very powerful. As indicated by the following
lemma, small pl1dfas can accept even some language families not in 2n.

Lemma 2.21. 2n 6⊇ pl1d

Proof. Consider all possible languages containing only binary words of length n. Let
Ln ⊆ {0, 1}n be one of these languages that is most difficult for 2nfa, i. e., the one
that requires a 2nfa with highest number of states. We claim that the language
family L := {Ln}n≥1 witnesses the claim of the lemma.

It is easy to see that Ln can be accepted by an n-component pl1dfa with O(n)
states per component: The i-th component reads the input word and remembers its
i-th symbol. In this way, complete information about the input is stored in the tuple
of the result states. Hence, any L ⊆ {0, 1}n can be accepted by a pl1dfa with O(n2)
states.

On the other hand, assume that L ∈ 2n. Then, there is some polynomial p(n) such
that, for every n, there is a 2nfa with p(n) states accepting Ln. By the choice of Ln,
any L ⊆ {0, 1}n can be accepted by a 2nfa with p(n) states. There are, however, 22n

different languages that are subsets of {0, 1}n, but there are only 2O(p2(n)) different
2nfas with p(n) states. Hence, we have a contradiction for large enough n.

Putting together these results with Theorem 2.18 yields that pl1d is a strict su-
perset of 1d, ∩l1d, ∪l1d, and rd and it is incomparable with all other classes in
Figures 2.5 and 2.6. Similarly, p21d is a strict superset of sd and all classes included
in sd and it is incomparable with all other classes in Figures 2.5, 2.6.1

We used the notion of parallel automata as an intermediate step in the hardness
propagation. Consistently with our goals, we defined a family of a parallel automata
to be small if the automata contain only polynomial number of components with
polynomial number of states each. There is an alternative definition to this, used
in [KKM08], which relaxes the constraint on the number of components. In this way,
small parallel automata must only have polynomially small components, the number
of components is not relevant.

All hardness propagation results presented in this chapter hold also for this alter-
native definition of parallel automata, what is in fact a stronger result than the one we
presented. Nevertheless, we opted not to consider these alternative complexity classes.

1This claim follows easily from Theorem 2.18 for all classes except 2d. For 2d, it is trivial to
adapt the proof of p21d 6⊇ 1∆ to p21d 6⊇ 2d.

44 Chapter 2. Determinism vs. Nondeterminism

The reason for this is similar to the reason why we did not include the classes of gen-
eral parallel automata into the map of complexity classes. The alternative classes of
parallel automata are rather unnatural, as they correspond to automata with possibly
large descriptional complexity; this problem arises even for parallel intersection and
parallel union automata. As a consequence, such alternative classes do not fit easily
in the hierarchy of classes that we have built; e. g., it is an open problem if a parallel
automaton with exponentially many small components can be simulated by a small
sweeping automaton.

On the other side, separating complexity classes of both variants of parallel au-
tomata pose an interesting open problem. Since this apparently cannot be done using
the technique of generic words, completely new technique for proving lower bounds
on parallel automata seems to be necessary to achieve the separation.

Chapter 3

Randomization

So far, we have dealt only with deterministic and nondeterministic models of finite
automata. It is possible, however, to define also randomized models of automata, in
a similar way as it is done for Turing machines. In this chapter, we focus on these
randomized models.

Essentially, a randomized automaton (sometimes called also probabilistic automa-
ton) is just a nondeterministic automaton that makes its nondeterministic choices
according to some probability distribution. More precisely, the difference between a
nondeterministic automaton and a randomized automaton of the corresponding type
is as follows. Consider a nondeterministic automaton over a set of states Q and alpha-
bet Σ. The transition function δ of this automaton partially maps Q× (Σ∪{`,a}) to
the set of all possible subsets of feasible actions A. The action of a one-way, rotating,
and sweeping automata is completely described by the new state, hence A = Q in
this case. For two-way automata, the action consists of the new state and the move-
ment, hence A = Q × {−1, 0, 1} for two-way automata. The transition function δ of
a randomized machine partially maps Q × (Σ ∪ {`,a}) to the set of all probability
distributions over the set of actions A, i. e., all total functions from A to the real
numbers that obey the axioms of probability. Hence, on any input word z ∈ Σ∗, the
computation of M on z is a probability distribution over all possible computations.
The expected length of a computation drawn from this distribution is called the ex-
pected running time of M on z. Easily, this way of defining a randomized automaton
applies for one-way, rotating, sweeping, as well as for two-way automata.

Randomized automata are sometimes required to use only rational numbers in
their transition functions (see e. g. [Wan92]). In some sense, this is more natural than
allowing arbitrary real numbers, since real numbers might have infinite descriptional
complexity. Indeed, as we note later (and as shown in [dLMSS56] for a more general
computation model), certain models of finite automata can accept even languages
that are not recursively enumerable if arbitrary real probabilities can be used.

Nevertheless, the results presented in this chapter are robust with regard to the
restriction to rational probabilities: While all upper bounds are achievable with the

45

46 Chapter 3. Randomization

(potentially weaker) models with rational probabilities, all lower bounds are valid also
for the (potentially stronger) models with real probabilities. Since lower bounds on
state complexity of randomized automata is our main focus in this chapter and some
of our lower bound proofs require the use of real numbers, we use the more general
definition of randomized automata that allows to use arbitrary real numbers in the
transition function.

Even more restricting variant of definition of randomized automata is sometimes
used (see e. g. [Fre75, Gil77]). Here, the automaton is required to use fair coin flips
only, i. e., the source of randomness provides only a sequence of random bits. Never-
theless, it is not difficult to check that any rational probability can be generated by
using several coin flips (see e. g. [Con01]), hence the models with coin flips and with
rational probabilities are computationally equivalent.1 This might be not the case for
the equivalence of complexity classes: A straightforward conversion of a small family
of automata using rational probabilities might yield a family of coin-flipping automata
that is not small. No separation results are, however, known for these two models.
Nevertheless, all relationships between complexity classes presented in this chapter
are robust in this respect. I. e., all presented relationships hold for automata using
real probabilities, for automata using rational probabilities, as well as for coin-flipping
automata.

In this chapter, we introduce various models of randomized finite automata and
provide several results concerning the complexity classes of these models, what gives
some insight into the power of randomized computations.

The next section is dedicated to the definition of the randomized models. In Sec-
tion 3.2, we provide results concerning the complexity classes of the introduced mod-
els. Most of these results are rather straightforward implications of previous works,
but together they augment the hierarchy of the complexity classes in an interesting
way. Furthermore, several open problems are sketched here.

Results shown in Section 3.2 suggest that, for rotating, sweeping, and two-way
automata, even LasVegas randomization is quite powerful. This fact, however, de-
pends on exponential running time of the LasVegas automata. Hence, it is a natural
question to ask if the exponential running time is indispensable for the power of the
LasVegas machines. We address this problem in Section 3.4 for rotating automata.
Here, we show that restricting rotating automata to linear expected running time
significantly decreases their power. We further generalize this result for sweeping
automata in Section 3.5.

1This is true if the randomized automata are allowed to make transitions without head movement
(called also λ-transitions). Not allowing this is rather unnatural, since the amount of randomness
accessible by the automaton would be very restricted in such a case. On the other side, it is possible
to prove that any coin-flipping randomized automaton with λ-transitions can be simulated by a
corresponding randomized automaton with rational probability distributions without λ-transitions
and that this can be done with no increase in the state complexity. The proof can be done by using
the theory of Markov chains in a straightforward way; it is sufficient to prove that a coin-flipping
automaton can generate only rational probabilities within λ-transitions.

3.1. Randomized Models 47

3.1 Randomized Models

As we have already mentioned, a randomized automaton is essentially a nondetermin-
istic automaton that follows each nondeterministic choice with certain probability;
these probabilities are part of the transition function δ. Hence, the last missing part
of the definition of randomized automata is to define which words are accepted by the
automaton. There are several ways of doing that, yielding several different models of
randomized automata.

3.1.1 Monte-Carlo Automata with Two-Sided Error

The most general way of defining the language accepted by a randomized finite au-
tomaton M is to define the language as the set of all words accepted by M with
probability greater than 1/2. This definition applies to one-way, rotating, sweeping,
as well as two-way randomized finite automata. We call the resulting computation
models as one-way (rotating, sweeping, two-way) Monte-Carlo finite automata with
two-sided unbounded error and denote them as 1p2

Ufas (rp2
Ufas, sp2

Ufas, 2p2
Ufas).

One-way Monte-Carlo automata with two-sided error were introduced in [Rab63],
as the first randomized model of finite automata. Here, even more general definition
was used, allowing arbitrary constant α instead of 1/2 as the cut-point. Nevertheless,
as already explained in Chapter 1, this makes no difference to the computational
power. Indeed, any Monte-Carlo finite automaton with two sided unbounded error
defined with cut-point α can be simulated by a finite automaton of the same type
with cut-point 1/2 at the cost of adding only constant number of states.2

In a similar way as for the non-randomized models, we can define the complexity
classes induced by small families of one-way Monte-Carlo automata with two-sided
unbounded error. Following our naming convention, we denote these classes as 1p2

U,
rp2

U, sp2
U, and 2p2

U.
Monte-Carlo automata with two-sided unbounded error can be very powerful.

Indeed, when they are not restricted to rational numbers in the transition function,
even 1p2

Ufas can accept languages that are not recursively enumerable [Rab63]. (This
is not very surprising, since there are uncountably many different automata.) Even
when restricted to rational numbers, 1p2

Ufas can accept non-regular languages [Fre81].
This power, however, depends on the fact that the probability between accepting a
word in the language and a word not in the language can be arbitrarily close. Hence,
the model with unbounded error does not capture the notion of efficient computability.

To overcome this deficiency, the computation model with bounded error has been
introduced in [Rab63] (called model with isolated cut-point there). In this model,
the finite automaton M accepting a language L is required to accept all words in
L with probability at least 1/2 + ε and accept all words not in L with probability

2This claim holds for automata using real probabilities. For automata restricted to rational
probabilities, the claim holds only for rational cut-points. For coin-flip automata, the construction
works for rational cut-points, but the number of states added depends on the value of the denominator
of the cut-point.

48 Chapter 3. Randomization

at most 1/2 − ε for some fixed constant ε > 0.3 Again, this definition applies to
one-way, rotating, sweeping, as well as two-way randomized finite automata. We call
the resulting computation models as one-way (rotating, sweeping, two-way) Monte-
Carlo finite automata with two-sided bounded error and denote them as 1p2fas (rp2fas,
sp2fas, 2p2fas). We call the parameter ε as the error bound.

It is possible to define the complexity classes corresponding to Monte-Carlo finite
automata with two-sided bounded error in a straightforward way, i. e., as the classes
of all language families solvable by a small family of the corresponding bounded-
error automata. In such definition, however, the error bound ε may be different for
different automata in the family. In this way, we introduce classes 1p2

N, rp2
N, sp2

N, and
2p2

N corresponding to one-way, rotating, sweeping, and two-way Monte-Carlo finite
automata with two-sided bounded error. We use the superscript N to emphasize that
the error is bounded nonuniformly, i. e., the parameter ε may decrease arbitrarily fast
in the family of small automata.

As opposed to the model with unbounded error, the model with bounded error
captures the notion of computability. Indeed, using the technique of amplification
(we show more details about how to use amplification with finite automata later
in Lemma 3.1), arbitrary small error can be achieved. In [Rab63] it was proven
that all languages accepted by 1p2fas are regular, even without the restriction to
rational numbers in transition function. However, the nonuniformity of the error
bound may cause that the use of the amplification technique causes huge blowup in
space complexity, rendering it inefficient.

Even though the computation models with nonuniformly bounded error do not
guarantee efficient solvability, they are quite interesting in the context of our work.
These models fit very naturally in the lower bound proofs presented later. They are
also the least restricted models for which the corresponding proof techniques work.
Hence, using the models with nonuniformly bounded error gives us the strongest
results achievable by these proof techniques.

The model of bounded-error Monte-Carlo computations is sometimes defined with
some fixed error bound, e. g. ε = 1/6 (see e. g. [Hro05]). While the value of ε is usually
irrelevant when dealing with the individual automata, using the definition with fixed
ε yield different complexity classes. Here, the error bound ε is required to be the
same for all automata in the family. We call the corresponding complexity classes as
Monte-Carlo with two-sided uniformly bounded error, and denote them as 1p2

ε, rp2
ε,

sp2
ε, and 2p2

ε. I. e., for every fixed 0 < ε < 1, the class 1p2
ε contains all language families

that are solvable by a family of small one-way Monte-Carlo automata with two-sided
error bounded by ε; the definition for rotating, sweeping, and two-way automata is
analogous.

For one-way, rotating, and sweeping automata, the complexity class induced by
uniformly bounded two-sided Monte-Carlo is the same for any ε ∈ (0, 1). Indeed, it

3Similarly as in the case of unbounded error, allowing arbitrary cut-point instead of 1/2 does not
increase the computational power of the model.

3.1. Randomized Models 49

is possible to use the amplification technique, as described by the following lemma.
Nevertheless, an analogous result for two-way automata is not known.

Lemma 3.1. Consider arbitrary ε1, ε2 ∈ (0, 1). There exists an integer c that depends
only on ε1, ε2 such that for any sp2fa M1 with k states working with error bound ε1

there exists an equivalent sp2fa M2 with O(kc) states working with error bound ε2.
An analogous result holds for rp2fas and 1p2fas.

Proof. We focus on the case of sweeping automata; our proof, however, works smooth-
ly for rotating and one-way automata, too.

The basic idea is to use the method of probability amplification [Hro05]. More
precisely, we construct an automaton M2 that simulates c independent runs of M1 and
accepts if and only if a majority of the simulated runs of M1 accepts. Formula (2.13)
in [Hro05] ensures that if

c ≥ 2 ln δ
ln(1− 4ε1)

, (3.1)

then M2 gives the correct answer with probability at least 1 − δ. To guarantee that
the automaton M2 works with error bound ε2, it is sufficient to choose δ := 1/2− ε2.
Hence, M2 has to simulate c independent runs of M1 for

c ≥
2 ln(1

2 − ε2)
ln(1− 4ε1)

. (3.2)

The simulation of c independent runs can be done in parallel. Automaton M2

consists of Cartesian product of c independent copies of M1. In every computation
step, M2 performs one step of M1 in every copy independently. Automaton M2

accepts iff majority of the simulated components accepts.
More formally, let Q is the set of states of M1. Automaton M2 has the set of states

(Q∪ {⊥,>})c ∪ {q′a}, where q′a is a new accept state of M2 and Sc denotes Cartesian

product applied c times, i. e., Sc =

c︷ ︸︸ ︷
S × . . .× S. The symbol ⊥ is used to denote

that the corresponding simulation hangs; > means that the corresponding simulation

already accepted. The start state of M2 is (
c︷ ︸︸ ︷

qs, . . . , qs), where qs is the start state of
M1.

Automaton M2 simulates c independent runs of M1 in a straightforward way on
every symbol except a. Hence, the transition function δM2 of M2 is defined as

δM2((q1, . . . , qc), a)((q′1, . . . , q
′
c)) =

c∏
i=1

δM1(qi, a)(q′i)

50 Chapter 3. Randomization

for any a 6= a, where δM1 is the transition function of M1, extended in the following
way:

δM1(⊥, a)(⊥) = 1
δM1(⊥, a)(q) = 0 ∀q 6= ⊥
δM1(>, a)(>) = 1
δM1(>, a)(q) = 0 ∀q 6= >
δM1(q, a)(⊥) = 1 if transition function of M1 is not defined for (q,a)
δM1(q, a)(q′) = 0 if transition function of M1 is not defined for (q,a)

and q′ 6= ⊥

When reading a, we define the transition function of δM2 in a similar way, except
that we implement the accepting condition of M2 and take care to properly remember
which simulated runs accepted:

δM2((q1, . . . , qc),a)(q′a) = 1 if more than c/2 of qi are equal to >
δM2((q1, . . . , qc),a)(q′a) = 0 if at most c/2 of qi are equal to >
δM2((q1, . . . , qc),a)((h(q′1), . . . , h(q′c))) =

∏c
i=1 δ

M1(qi, a)(q′i)
if at most c/2 of qi are equal to >

δM2((q1, . . . , qc),a)((q′1, . . . , q
′
c)) = 0 if not defined otherwise

where h(qa) = > and h(q) = q for any q 6= qa.
It is easy to check that the probability that M2 accepts an input word z is equal

to the probability that more than one half of c independent runs of M1 accepts z.
According to [Hro05], if (3.2) holds, this probability is at least 1/2 + ε2 if the input
z is in the solved language and at most 1/2− ε2 otherwise.

In the proof of Lemma 3.1, we have used parallel simulation of the independent
runs, since this is the only valid option for one-way automata. For rotating and
sweeping automata we can also use sequential simulation, which is more efficient:
Instead of yielding O(kc)-state automata, it produces automata with O(kc) states.
Here, the idea is to simulate the independent runs sequentially, one after another.
One problem that has to be solved when using this approach is the fact that rotating
and sweeping Monte-Carlo automata may loop infinitely when not accepting the input
word. Nevertheless, it is possible to prove that any accepting computation of a rp2fa
or a sp2fa has at most exponential length with very high probability. Hence, it
is possible to implement the sequential simulation by stopping every simulated run
after exponential expected time, what can be done by stopping the simulation with
probability αn after every simulated run (for some constant α < 1, where n is the
length of the input word). Nevertheless, the gain obtained by the sequential simulation
is not relevant with respect to the polynomial complexity classes we are dealing with.

3.1. Randomized Models 51

3.1.2 Monte-Carlo Automata with One-Sided Error

Another well known variant of Monte-Carlo computation models is a more restricting
one, in the sense that the randomized machine may err on one side only. More pre-
cisely, any word in the solved language must be accepted with a nonzero probability,
and any word not in the solved language must be accepted with zero probability.
In this way, we define the one-way (rotating, sweeping, two-way) Monte-Carlo finite
automata with one-sided unbounded error and denote them as 1p1

Ufas (rp1
Ufas, sp1

Ufas,
2p1

Ufas). In the terminology of [Rab63], these automata are probabilistic automata
with (non-isolated) cut-point 0. Consistently with our naming convention, we denote
the corresponding complexity classes as 1p1

U, rp1
U, sp1

U, and 2p1
U.

It is easy to see that the Monte-Carlo randomization with one-sided (unbounded)
error is a special case of nondeterminism. Indeed, any Monte-Carlo randomized ma-
chine with one-sided error can be trivially transformed into an equivalent nonde-
terministic machine, just by replacing any random choice that occurs with nonzero
probability by a nondeterministic choice.

In a similar way as for Monte-Carlo machines with two-sided error, we can con-
sider a bounded-error variant of Monte-Carlo machines with one-sided error. Here, a
finite automaton M accepting a language L is required to accept all words in L with
probability at least ε and accept all words not in L with zero probability, where ε > 0
is some fixed constant. Applying this definition to one-way, rotating, sweeping, as well
as two-way randomized finite automata yields the computation models of one-way,
rotating, sweeping, and two-way Monte-Carlo finite automata with one-sided bounded
error, which we denote as 1p1fas, rp1fas, sp1fas, and 2p1fas.

Analogously as for the Monte-Carlo automata with two-sided error, we proceed
with the definition of nonuniformly bounded classes corresponding to one-way, rotat-
ing, sweeping, and two-way Monte-Carlo finite automata with one-sided error, which
we denote as 1p1

N, rp1
N, sp1

N, and 2p1
N. Furthermore, we define the corresponding uni-

formly bounded classes, denoted as 1p1
ε, rp1

ε, sp1
ε, and 2p1

ε. It is straightforward to
check that Lemma 3.1 can be easily adapted for machines with one-sided error. Fur-
thermore, it can be extended to two-way machines, too, by using sequential simulation
and the technique used in [MS99] to avoid problems with detection of termination.
This fact is stated as the following lemma:

Lemma 3.2. Consider arbitrary ε1, ε2 ∈ (0, 1). There exists an integer c that depends
only on ε1, ε2 such that for any 1p1fa M1 with k states working with error bound ε1

there exists an equivalent 1p1fa M2 with O(kc) states working with error bound ε2.
An analogous result holds for rp1fas, sp1fas and 2p1fas.

Proof. The claim for one-way, rotating, and sweeping automata can be proven in a
similar way as in Lemma 3.1. Indeed, it is sufficient that M2 simulates c independent
computations of M1 such that

c >
ln(1− ε2)
ln(1− ε1)

52 Chapter 3. Randomization

and accepts iff at least one simulated computation accepts the input. It is easy to
see that probability of accepting any word not in the solved language is zero and
probability of rejecting any word in the solved language is at most

(1− ε1)c ≤ 1− ε2.

Hence, M2 works with error bound ε2.
For two-way automata, the result of [MS99] ensures that there exists an automaton

M ′1 equivalent to M1 that halts with probability 1, works with error bound 1/2, and
has O(k) states. Then, it is possible to construct M2 that simulates c independent
runs of M ′1 in a sequential way. In this way, we obtain the desired M2 with only
O(kc) states. Note that this method is usable for rotating and sweeping automata as
well.

It is not difficult to see that Monte-Carlo randomized machines with one-sided
error can be simulated by Monte-Carlo machines with two-sided error without signif-
icant increase in the state complexity:

Lemma 3.3. Any k-state Monte-Carlo finite automaton M with one-sided error ac-
cepting language L can be transformed into an equivalent (k+O(1))-state Monte-Carlo
finite automaton M ′ with two sided error of the corresponding type.

Proof. It is sufficient that M ′ accepts immediately at the start of the computation
with some probability α and simulates M otherwise. When dealing with unbounded
error, we set α = 1/2. In this case, every word not in L is accepted with probability
1/2, and every word in L is accepted with probability strictly greater than 1/2.

For bounded error models with error bound ε, we can set α = (1− ε)/(2− ε); in
this way, the resulting M ′ has error bound ε/(4 − 2ε). Indeed, any word not in the
solved language is accepted with probability α, any word in the language is accepted
with probability at least α+ (1− α)ε, and for the error bound of M ′ it holds that

1
2
− α = α+ (1− α)ε− 1

2
=

ε

4− 2ε
.

Due to Lemma 3.3, we have 1p1
U⊆ 1p2

U, 1p1
N⊆ 1p2

N, 1p1
ε⊆ 1p2

ε, rp1
U⊆ rp2

U, rp1
N⊆ rp2

N,
rp1

ε⊆ rp2
ε, sp1

U⊆ sp2
U, sp1

N⊆ sp2
N, sp1

ε⊆ sp2
ε, 2p1

U⊆ 2p2
U, 2p1

N⊆ 2p2
N, and 2p1

ε⊆ 2p2
ε.

3.1.3 LasVegas Automata

It is possible to restrict the randomized automata even more and require zero probabil-
ity of error. In this setting, called LasVegas randomized computation, the randomized
machine is allowed to give 3 possible answers: Yes, No, or I do not know. Whenever
the answer Yes or No is given, it has to be correct. Furthermore, probability of an-
swering I do not know must be bounded by a constant smaller than one, unless we
are dealing with the variant with unbounded error.

3.1. Randomized Models 53

More precisely, a LasVegas automaton M needs to have a special reject state
qr ∈ Q in addition to the accept state qa. If M reaches qr after reading a, the
computation of M halts, and we say that the computation of M rejects the input word
(i. e., gives answer no). Beside accepting (i. e., giving answer yes), a computation of
M can also hang or run for an infinite time; in this case, the computation neither
accepts nor rejects the input (i. e., gives an answer I do not know). An input word
z ∈ Σ∗ is accepted if and only if M accepts z with nonzero probability and rejects
z with probability 0. Similarly, z is rejected if and only if M rejects z with nonzero
probability and accepts z with probability 0. Automaton M is a correct LasVegas
automaton with unbounded error if every z ∈ Σ∗ is either accepted or rejected.

The definition of LasVegas automata applies to one-way automata (1p0
Ufas), ro-

tating automata (rp0
Ufas), sweeping automata (sp0

Ufas), as well as two-way automata
(2p0

Ufas). We denote the complexity classes induced by small families of these au-
tomata as 1p0

U, rp0
U, sp0

U, and 2p0
U, respectively.

The model of LasVegas computations with unbounded error is rather unnatural,
but we deal with it for the sake of completeness. The more commonly used model is a
bounded-error variant of LasVegas computations. A valid LasVegas finite automaton
with error bound ε > 0 is required to both accept every word in the solved language
and reject every word not in the solved language with probability at least ε. We denote
one-way, rotating, sweeping, and two-way LasVegas finite automata with bounded
error as 1p0fas, rp0fas, sp0fas, and 2p0fas. Again, we define both the nonuniformly
bounded and uniformly bounded corresponding complexity classes, and denote them
as 1p0

N, rp0
N, sp0

N, 2p0
N, 1p0

ε, rp0
ε, sp0

ε, and 2p0
ε.

In a similar way as for the Monte-Carlo automata, it is possible to use the amplifi-
cation technique for LasVegas finite automata (using parallel simulation for one-way
machines, sequential simulation for two-way machines, and either one for rotating and
sweeping machines). Hence, the uniformly bounded complexity classes are the same
for any value of ε ∈ (0, 1):

Lemma 3.4. Consider arbitrary ε1, ε2 ∈ (0, 1). There exists an integer c that depends
only on ε1, ε2 such that for any 1p0fa M1 with k states working with error bound ε1

there exists an equivalent 1p0fa M2 with O(kc) states working with error bound ε2.
An analogous result holds for rp0fas, sp0fas and 2p0fas.

Proof. The parallel simulation works in the same way as in Lemma 3.2. For the
sequential simulation, it is possible to adapt the technique of [MS99] in the same way
as it was done in [HS01b]. Indeed, it is sufficient to restart the simulated LasVegas
machine with a fixed probability after each computation step. In this way, the correct
answer is eventually found. Such construction yields a LasVegas automaton M2 with
O(k) states that always gives correct answer.

The concept of LasVegas finite automata has been introduced in [HS01a] in the
uniformly bounded variant. The LasVegas randomization has been, however, exten-
sively studied for other computation models, such as Turing machines, communication
complexity, boolean circuits, and ordered binary decision diagrams.

54 Chapter 3. Randomization

3.2 Results for Unrestricted Running Time

In this section, we present previously known results (as well as their straightforward
implications) about the complexity classes of randomized finite automata defined
so far. We do not place any further restrictions to the randomized machines yet.
In particular, we are not interested in the running time of rotating, sweeping, and
one-way randomized finite automata. The impact of restricted running time on the
computational power of the automata is analyzed in the remaining sections of this
chapter.

3.2.1 Rotating, Sweeping, and Two-Way Automata

Most of the complexity classes of rotating, sweeping, and two-way Monte-Carlo and
LasVegas finite automata fit nicely to the map of the complexity classes presented in
Section 2.4.

Monte-Carlo automata with One-Sided Error. Obviously, any Monte-Carlo
automaton with one-sided error, even one with unbounded error, can be trivially
simulated by a corresponding nondeterministic automaton. Hence, it holds that rp1

ε⊆
rp1

N ⊆ rp1
U ⊆ rn, sp1

ε ⊆ sp1
N ⊆ sp1

U ⊆ sn, and 2p1
ε ⊆ 2p1

N ⊆ 2p1
U ⊆ 2n. The result

of [MS99] directly proves that, for any k-state 2nfa, there exists an equivalent O(k)-
state 2p1fa with an error bound 1/2, what implies that 2n ⊆ 2p1

ε.4 The same idea can
be transformed for sweeping and rotating automata in a straightforward way, which
proves that all one-sided error Monte-Carlo classes collapses with nondeterminism for
rotating, sweeping, and two-way automata:

2p1
ε = 2p1

N = 2p1
U = 2n

and (since we have proven rn = sn in Chapter 2)

rp1
ε = rp1

N = rp1
U = rn = sn = sp1

ε = sp1
N = sp1

U.

LasVegas automata. Easily, any LasVegas machine can be trivially transformed
into a corresponding one-sided error Monte-Carlo machine. Furthermore, all LasVegas
classes are closed under complement, since it is possible to trivially transform any
LasVegas automaton A accepting L into a LasVegas automaton of the same type
accepting L just by exchanging the accept and reject state. Hence, LasVegas classes
are always subsets of the corresponding self-verifying classes: rp0

U ⊆ r∆, sp0
U ⊆ s∆,

and 2p0
U ⊆ 2∆. Furthermore, it was shown in [HS01b] that it is possible to adapt

the technique of [MS99] to prove that any selfverifying automaton can be simulated
by a (uniformly bounded) LasVegas automaton of the corresponding type without

4For coin-flipping automata, the construction can yield O(k2)-state 2p1fa. Nevertheless, this is
not significant for the relationship of the corresponding complexity classes.

3.2. Results for Unrestricted Running Time 55

significant blowup in its state complexity. Hence, all LasVegas classes collapses with
self-verification for rotating, sweeping, and two-way automata:

2p0
ε = 2p0

N = 2p0
U = 2∆

and (since we have proven r∆ = s∆ in Chapter 2)

rp0
ε = rp0

N = rp0
U = r∆ = s∆ = sp0

ε = sp0
N = sp0

U.

Monte-Carlo automata with Two-Sided Error. Our knowledge of the classes
of rotating, sweeping, and two-way Monte-Carlo finite automata with two-sided error
is less deep. It is obvious that rp2

ε⊆ rp2
N⊆ rp2

U and 2p2
ε⊆ 2p2

N⊆ 2p2
U. It is possible to

prove that a sweeping Monte-Carlo automaton with two-sided error can be simulated
by a rotating automaton of the corresponding type without significant blowup in the
state complexity.

The basic idea of the proof is similar to the proof used for the nondeterministic
case in Lemma 2.17. The rotating automaton M ′ simulates the left computations of
the sweeping automaton M in a straightforward way. To simulate a right computa-
tion, the computation rcomp of M is chosen uniformly at random. Automaton M ′

continues with the simulation of the next traversal of M with the probability equal
to the probability that M performs the chosen computation rcomp. Otherwise, the
simulation of the right-to-left traversal is repeated with another randomly chosen
computation.

Lemma 3.5. Each sp2fa with k states can be simulated by a rp2fa with at most O(k3)
states. The same result holds for sp2

Ufas and rp2
Ufas, too.

Proof (by T. Mömke). Given a k-state sp2fa M = (q0, δ, qa) over an alphabet Σ and
a set of states Q, we construct an equivalent rp2fa M ′ = (q′0, δ

′, q′a) over the same
alphabet with state set Q′ such that |Q′| = O(k3).

The rp2fa M ′ simulates each left computation of M in a straightforward manner.
Thus each pair of states qi, qj in M has a corresponding pair of states q′i, q

′
j in M ′

and the probability to reach a state qj from qi in M on the input string from left to
right is exactly the same as the probability to reach q′j from q′i in M ′.

Now we consider the simulation of a right computation. Let w = w1w2 . . . wl be the
input of length l. Assume that M starts the right computation at wl in state q1, i. e.,
M reached q1 after finishing the previous left computation and reading a. We know
that the computation rcompM,q1(w) consists of a sequence of l + 1 states. Consider
any such sequence s = 〈s1, s2, . . . , sl, sl+1〉. The probability that M performs s is

ps := [s1 = q1] ·
l∏
i=1

δ(si, wl−i+1)(qi+1),

where [s1 = q1] is defined to be 1 if s1 = q1 and 0 otherwise. Now we consider all
kl+1 sequences s and to each sequence we assign the probability of the corresponding

56 Chapter 3. Randomization

computation. Obviously, an invalid sequence has probability zero and the sum of the
assigned probabilities over all sequences is 1.

The basic idea is that M ′ chooses some sequence s = 〈s1, . . . , sl+1〉 uniformly at
random. With probability ps, automaton M ′ proceeds to the simulation of the next
left computation of M starting in state sl+1, where ps is the probability assigned to
the chosen sequence. In this case, we say that M ′ accepted the chosen sequence. With
probability 1− ps, automaton M ′ chooses another sequence and repeats the process.

The probability of a repetition, i. e., of not accepting one randomly chosen se-
quence) is

1−
∑

(s1=q1,s2,...,sl+1)∈Ql+1

1
kl+1

·
l∏
i=1

δ(si, wl−i+1)(si+1) = 1− 1
kl+1

.

The probability that M ′ makes exactly i repetitions, chooses the sequence s af-
terwards, and accepts it, is

1
kl+1

· ps ·
(

1− 1
kl+1

)i
Hence, the probability that M ′ eventually accepts s is

1
kl+1

· ps ·
∑
i≥0

(
1− 1

kl+1

)i
=

1
kl+1

· ps ·
1

1−
(
1− 1

kl+1

) = ps.

We have just proven that the probability that M ′ accepts sequence s is the same
as the probability that M performs s. Hence, the probability distribution of M ′ over
its set of states is isomorphic to the probability distribution of M every time the
simulation of left computation starts. Thus, M ′ correctly simulates M .

Now we discuss how to implement this idea. Instead of picking a sequence directly,
M ′ can also pick a sequence uniformly at random state by state from left to right
and accept that sequence with the assigned probability. At first, M ′ selects state
sl+1 uniformly at random. Automaton M ′ keeps q1 and sl+1 stored in its states. Let
sl+1, sl, . . . , si+1 be the first l − i + 1 states of the sequence chosen by M ′. Thus
after l − i + 1 steps, M ′ knows q1, sl+1, si+1 and, since it reads the input from
left to right, symbol wl−i+1. Now M ′ picks a state si uniformly at random. With
probability δ(si, wl−i+1)(si+1), automaton M ′ proceeds until the right end-marker is
reached. With probability 1− δ(si, wl−i+1)(si+1), automaton M ′ resets and starts a
new simulation of the right computation. If a is reached, M ′ resets and starts a new
simulation if s1 6= q1. Otherwise, simulation of the right computation is finished, and
the next left computation of M can be simulated. To do so, M ′ simulates the move
of M from state sl+1 on ` and proceeds to the first input symbol.

Now let us count the number of states of M ′. Obviously, the left computation
can be simulated with k states. In the simulation of the right computation, picking a

3.2. Results for Unrestricted Running Time 57

sequence and choosing whether to restart without storing the first and the last state
of the computation only requires a copy of Q. Since we also store the first and the
last state q1 and sl+1, we need k2 copies of Q in total to simulate right computations
of M . Thus M ′ has O(k3) states.

Note that the proof of Lemma 3.5 works for automata using real probabilities as
well as for automata using rational probabilities. Furthermore, it can be adapted in
a straightforward way for coin-flipping automata.5

Since every rotating automaton with k states can be easily simulated by a sweeping
automaton of the same type with k+O(1) states, Lemma 3.5 shows that the rotating
and sweeping classes of Monte-Carlo finite automata with two-sided error collapse:
rp2

U = sp2
U, rp2

N = sp2
N, and rp2

ε = sp2
ε.

Lemma 3.1 implies that the classes rp2
ε = sp2

ε collapse for all ε. However, we do
not know if this is the case for two-way automata, too.

The last mentioned result about rotating, sweeping, and two-way Monte-Carlo
finite automata with two-sided error is the one proved in [Fre81]: It is possible to
accept some nonregular languages by bounded-error rp2fas. This fact easily implies
that rn (rp2

ε, sn (sp2
ε, and 2n (2p2

ε.
The results regarding rotating, sweeping, and two-way randomized automata are

summarized in Figure 3.1. When combined with the results of Chapter 2, we have
shown a separation between determinism and LasVegas randomization for rotating
and sweeping automata. In fact, the question about their relationship was the main
motivation for the analysis of the self-verifying nondeterminism for rotating and
sweeping models.

3.2.2 One-Way Randomized Automata

One-way finite automata always run in linear time, since their head movement capa-
bilities do not allow them to run longer.6 However, less classes of one-way randomized
finite automata collapse together and the resulting hierarchy of classes is more com-
plicated. In this subsection, we show the hierarchy presented in Figure 3.2. Using
the depicted results, Observation 1.1 allows us to classify the relationship of any pairs
of classes in Figure 3.2 as either strict inclusion or incomparability, except for the
relationship of 1p0

N and 1p2
ε (here it is open if they are incomparable of if 1p0

N (1p2
ε).

5In this case, we need to modify the mechanism for deciding whether to start a new simulation
of the right computation or not. Instead of considering the probability δ(si, wl−i+1)(si+1) directly,
we need to simulate all λ-transitions of M between the selection of states si+1 and si. This can be
done at the cost of increasing the number of states k-times, i. e., automaton M ′ is constructed with
O(k4) states. Nevertheless, this increase in the state complexity is not significant from our point of
view.

6This is not directly true for coin-flipping automata, as they may loop infinitely on λ-transitions.
Nevertheless, it is easy to see that it is possible to remove all states that cause such infinite loops.
Afterwards, the expected number of λ-transitions between any two head movements is bounded by
a constant, thus the automaton runs in linear expected time.

58 Chapter 3. Randomization

...

...

...

rp1ε=rp1N=rp1U=rn=sn=sp1ε=sp1N=sp1U 2p1ε=2p1N=2p1U=2n

rp2N=sp2N 2p2N

rp2U=sp2U 2p2U

2p2ε1

2p2ε2

rp0ε=rp0N=rp0U=r∆=s∆=sp0ε=sp0N=sp0U 2p0ε=2p0N=2p0U=2∆

2drd sd

rp2ε=sp2ε

Figure 3.1: Map of the complexity classes of rotating, sweeping, and two-way ran-
domized automata. A solid arrow C→ C′ means that C (C′, a dotted arrow C→ C′

means that C′ ⊆ C.

Collapsing classes. Lemma 3.1 ensures that the classes 1p2
ε are equivalent for all ε.

Similarly, Lemma 3.2 and Lemma 3.4 ensure the same for 1p1
ε and 1p0

ε. The fact that
1p0
ε = 1d was proven in [HS01a] (and the proof was later refined in [HS03a]). Any

1p1
Ufa can be trivially simulated by a 1nfa. Hence, 1p1

U⊆ 1n. Since 1p0
U is closed under

complement (as in any LasVegas class, it is sufficient to exchange the accept and the
reject state to complement an automaton) and 1p0

U ⊆ 1p1
U trivially holds, 1p1

U ⊆ 1n
implies also 1p0

U ⊆ 1∆. The other way round, it is possible to trivially simulate any
1nfa by a 1p1

Ufa of the same size, just by replacing nondeterministic choices by random
choices with arbitrary non-zero probabilities. In this way, the probability of accepting
a word z is nonzero if and only if there exists an accepting computation for z in the
1nfa. Hence, 1p1

U = 1n. By similar arguments, we can show that 1p0
U = 1∆: Let 1nfa

M1 accepts L with k1 states and 1nfa M2 accepts L with k2 states, we can easily
construct a 1p0

Ufa M with k1 + k2 +O(1) states accepting L in the following way. At
the beginning of the computation, M decides whether to simulate M1 or M2, each
with probability 1/2. Afterwards, nondeterminism is replaced by random choices. If
the simulated automaton accepts, M accepts (if M1 is simulated) or rejects (if M2 is
simulated). Otherwise, M neither accepts nor rejects. Clearly M is always correct,
and gives the correct answer with nonzero probability.

3.2. Results for Unrestricted Running Time 59

1p0U=1∆

1p0N

1p0ε=1d

1p1U=1n

1p1N

1p1ε

(a)

1p2U

1p2N

1p2ε

1p0U=1∆

1p0ε=1d

1p2U

1p2N

1p2ε

1p1N

1p1ε

1p0N

1p1U=1n

(b)

(iv)(ii) (vi)

(i) (iii) (v)

Figure 3.2: Map of the complexity classes of one-way randomized automata. (a)
Inclusion results: An arrow C → C′ means that C ⊆ C′. (b) Separation results: An
arrow C→ C′ means that C′ 6⊆ C.

Inclusion results. All inclusion results in Figure 3.2a either hold trivially or follow
directly from Lemma 3.3.

Connection to communication complexity. Before we proceed to show the
separation results in Figure 3.2b, we discuss the connection of the state complexity of
finite automata with the communication complexity. This connection is not new, the
communication complexity was used to prove lower bounds on the state complexity
of finite automata e. g. in [HS01a]. To prove the claimed separations, we use some
results about communication complexity, too. More precisely, we are interested in the
fact that the state complexity of one-way finite automata and the two-party one-way
communication complexity is equal for two-symbol languages.

60 Chapter 3. Randomization

We focus on the following model of communication complexity (used e. g. in
[JPS84]): There are two parties with unlimited computational power. The first party
C1 receives an input x from a finite set of possible inputs X and sends some message
(i. e., a binary string) to the second party C2. The second party C2 receives an input
y from a finite set of possible inputs Y and the message sent by C1 and it has to
decide if the pair (x, y) satisfies the computed predicate P (x, y) ⊆ X × Y . We say
that a communication protocol computes P with communication complexity c if only
messages of length at most c bits are used in any computation.

The communicating parties C1 and C2 can work in a deterministic, nondetermin-
istic or randomized mode; in case of randomized communication protocols, we can
again use either LasVegas, Monte-Carlo with one-sided error, or Monte-Carlo with
two-sided error, each with bounded or unbounded error probability. Furthermore,
each model of randomized communication protocols can be allowed to use arbitrary
real probabilities, can be restricted to rational probabilities only, or can be restricted
to use fair coin flips as the only source of randomness. The last case is used e. g.
in [JPS84], where each communicating party is allowed to make certain fixed number
of coin flips during the computation. Nevertheless, there are no significant differences
in the communication complexity of bounded-error protocols using real probabilities,
rational probabilities, or coin flips. More precisely, any bounded-error communica-
tion protocol using real probabilities can be simulated by a protocol of the same type
restricted to coin flips. Indeed, it is possible to round the real probabilities to suffi-
ciently close probabilities that are computable by coin flips. After such change, the
probability of accepting any input is sufficiently close to the probability of accept-
ing the same input before the change. Furthermore, we can assume that no nonzero
probabilities are rounded to zero and vice-versa. Hence, if the rounding errors are
sufficiently small with respect to the error bound, the resulting communication pro-
tocol is again a bounded error protocol of the same type (although the error bound
may be weaker):

Observation 3.1. Consider any LasVegas, one-sided error Monte-Carlo, or two-
sided error Monte-Carlo communication protocol with bounded error using real proba-
bilities. There exists an equivalent communication protocol of the same type with the
same communication complexity restricted to fair coin flips only.

It is not difficult to see that there is a straightforward mapping between communi-
cation protocols and one-way finite automata. Indeed, any (deterministic, nondeter-
ministic, randomized) communication protocol C computing a predicate P (x, y) can
be transformed into a (deterministic, nondeterministic, corresponding randomized)
finite automaton M accepting language

LP = {xy | x ∈ X, y ∈ Y such that P (x, y) holds}.

Furthermore, if C has communication complexity c, then M has 2c + O(1) states.
The transformation itself is very straightforward: Automaton M has a special start
state, and one state corresponding to every possible message of C. After reading the

3.2. Results for Unrestricted Running Time 61

first symbol of the input word, M enters the state corresponding to the message sent
by C1. Afterwards, M reads the second symbol and it either hangs or accept (using
a special accept state), depending on the corresponding action of C2.

On the other hand, any finite automaton M accepting language LP with k states
can be transformed into a communication protocol C of the same type computing P
with communication complexity O(log k). Here, C1 just sends the state of M after
reading the first symbol as the message.

Hence, we can summarize our argumentation in the following observation:

Observation 3.2. Let X, Y be finite sets and P (X,Y) ⊆ X×Y be any predicate over
X × Y . Consider any deterministic, self-verifying, nondeterministic, or randomized
computation model using real or rational probabilities. There exists a finite automaton
of this type accepting the language

LP = {xy | x ∈ X, y ∈ Y such that P (x, y) holds}

with k states if and only if there exists a communication protocol of the same type
computing P with communication complexity O(log k).

Note that we have excluded the coin-flipping models from Observation 3.2. The
reason for this is that coin-flipping automata and coin-flipping communication pro-
tocols are essentially different computation models: Coin-flipping automata have no
fixed bound on the number of coin flips, what is not the case for coin-flipping com-
munication protocols. On the other hand, the communication protocols can use very
large number of flips without any impact on the communication complexity. Never-
theless, Observation 3.1 allows us to apply lower bounds on coin-flipping protocols to
automata using real probabilities.

Separation results. Now we show the separations claimed in Figure 3.2b.

(i) The separation 1p0
N 6⊆ 1d is witnessed by the language family J (defined by

Equation 2.9). Indeed, J /∈ 1d, as proven by Lemma 2.19. However, language
Jn can be accepted by a 1p0fa with n+O(1) working with error bound 1/n: The
second symbol of the input word is guessed uniformly at random, and the guess
is verified. The answer is provided with probability 1/n and is always correct.

(ii) The language family J describes the membership problem, where the goal is to
determine if a number given as the second symbol of the word belongs to a set
described by the first symbol. To witness the separation 1p1

ε 6⊆ 1∆, we define the
nonequality problem E = (En)n≥1 defined as as follows:

En := {α1α2 | α1, α2 ⊆ [n] and α1 6= α2}, (3.3)

where [n] := {1, . . . , n}.

62 Chapter 3. Randomization

It has been proven in [JPS84, Theorem 3.1iii] that the nonequality problem
(more precisely, the predicate corresponding to En in the sense of Observa-
tion 3.2) can be computed by a one-sided error Monte-Carlo communication
protocol with error bound 1/2 with communication complexity O(log n). (The
idea behind this fact is the well-known fingerprinting technique used for equality
testing, see e. g. [Hro05].) Hence, due to Observation 3.2, language En can be
solved by a 1p1fa with error bound 1/2 and with number of states polynomial
in n, what implies that E ∈ 1p1

ε.7

On the other hand, it is not difficult to see that any 1nfa M accepting the
complement of En needs at least 2n states. Indeed, for every α ⊆ [n] there
must be some state of M that is reached by some accepting computation after
reading the first symbol α of the input word. Furthermore, if some of these
states corresponds to two different sets α1 6= α2, automaton M accepts also the
word α1α2, what is a contradiction. Hence, E /∈ 1∆.

(iii) To witness the separation 1p0
N 6⊆ 1p1

ε, we use a communication complexity result
from [JPS84] about the language family J . The proof of [JPS84, Theorem 3.1ii]
implies that any uniformly bounded one-sided Monte-Carlo communication pro-
tocol (i. e., protocol with error bound that does not depend on n) computing
the predicate corresponding to Jn in the sense of Observation 3.2 has communi-
cation complexity Ω(n). Hence, Observations 3.2 and 3.1 ensure that J /∈ 1p1

ε.

On the other side, it is straightforward to see that Jn can be accepted by an
O(n) state 1p0fa with error bounded by 1/n. Hence, J ∈ 1p0

N.

(iv) The separation 1p2
ε 6⊆ 1n follows from results presented in [Amb96]. There,

the following language family {Lm}m≥1 has been defined. Language Lm is a
language over alphabet {a1, . . . , am} such that:

Lm = {w | w contains each of the letters a1, . . . , am exactly m times.}

It is not difficult to check that any 1nfa accepting Lm needs at least (1 +m)m

states (to prove our claim, it is sufficient to use analogous argument as employed
in (ii) to show that En is hard for 1nfas).

On the other hand, it has been proven in [Amb96] that there exists a 1p2fa with
O(m log2m

log logm) states that solves Lm with error bound 1/2. Hence, the language
family L = {Lm}m≥1 is in 1p2

ε, but not in 1n.

(v) To witness the separation 1p1
N 6⊆ 1p2

ε, we use a communication complexity result
from [BFS86] about the disjointness problem D = (Dn)n≥1 defined in Equa-
tion 2.10:

Dn := {αβ | α, β ⊆ [n] and α ∩ β = ∅}.
7For coin-flipping automata, we can not use Observation 3.2 directly to propagate the upper

bound. Nevertheless, it is easy to see that the upper bound is valid for coin-flipping automata, too.

3.3. Lower Bounds on 1p1fas 63

It has been proven in [BFS86, Theorem 7.2] that any uniformly bounded two-
sided Monte-Carlo communication protocol that computes the predicate corre-
sponding to Dn in the sense of Observation 3.2 has communication complexity
Ω(
√
n). Hence, Observations 3.2 and 3.1 ensure that D /∈ 1p2

ε. Since 1p2
ε is

closed under complement (it is sufficient to make every accepting computation
rejecting and every computation that hangs accepting, what can be achieved
using one extra state), D /∈ 1p2

ε. On the other hand, it is straightforward to see
that Dn can be accepted by an O(n)-state 1p1fa with error bounded by 1/n.
Hence, D ∈ 1p1

N.

(vi) The proof of the separation 1∆ 6⊆ 1p2
N follows from the main result of this thesis

presented in Section 3.4. Here we show that there exists a family of languages
L in 1∆ that is not solvable by small nonuniformly-bounded rp2fas working in
linear time. Obviously, any 1p2fa can be trivially simulated by a rp2fa in linear
time. Hence, L does not belong to 1p2

N.

Several separation results in Figure 3.2b follow from other previously published
works, which sometimes show stronger results. For example, 1p2

N (1p2
U follows from

the fact that 1p2
N contains only regular languages [Rab63], but 1p2

U contains some
non-regular languages, too [Rab63,Fre81].

It has been shown in [MPP01] that there exists a family of unary languages that
is not in 1n, but whose complement is in 1p1

N. Hence the separation 1n 6⊇ co-1p1
N⊆ 1p2

N

holds even for unary languages.
An alternative nonconstructive proof for the separation 1p2

ε 6⊆ 1d has been proven
in [Fre08]. Furthermore, the witness language family, whose existence is proved in a
nonconstructive way, can be accepted by small randomized reversible automata.

3.3 Lower Bounds on 1p1fas

In this section, we present the proof of the separation 1∆ 6⊆ 1p1
N, which will be needed

in Section 3.4 to prove lower bounds on rotating randomized automata working in
linear expected time. More precisely, we adapt the idea of confusing strings, as used in
Section 2.3.1, to randomized automata. In this way, we prove a hardness propagation
from 1d to 1p1

N, as stated by the following lemma:

Lemma 3.6. If no 1dfa with at most m states can solve language L, then no 1p1fa
with at most m− 1 states can solve language

∧
L. Similarly for

⊕
L.

Since Lemma 3.6 states that there is no small 1p1fa working with any (arbitrarily
small) error bound, the following corollary immediately follows:

Corollary 3.7. If L /∈ 1d, then
∧
L /∈ 1p1

N and
⊕
L /∈ 1p1

N.

Using Corollary 3.7, Lemma 2.19, Lemma 2.16, and Figure 2.4[C6,C7], we imme-
diately get that

∧
J ∈ 1∆− 1p1

N.

64 Chapter 3. Randomization

In some sense, this result is not very surprising. Intuitively, 1p1fas are somewhat
similar to ∪l1dfas: A ∪l1dfa consists of several components and the input word is
accepted if at least one of them accepts. On the other hand, a 1p1fa can behave
differently for different sets of random decisions and the input is accepted if at least
one of the random decisions leads to the acceptance. Hence, a 1p1fa can be very
roughly viewed as a collection of many deterministic automata, each for one set of
possible random decisions.

While this intuition suggests that it is feasible to adapt the technique of confusing
strings to 1p1fas, it is rather imprecise; while ∪l1dfas have always constant number
of components, the number of possible random decisions made by 1p1fas depends on
the length of the input word. We make, however, our argumentation more precise
in the rest of this section. We focus only on the case of

∧
L, the proof for

⊕
L is

analogous.
Formally, the transition function δ(q1, a)(q2) of a randomized automaton describes

the probability that the automaton makes a transition from state q1 to q2 when reading
a symbol a. In this section, we introduce an extension of this notation for one-way
automata: We use the expression δ(q1, w)(q2) to denote the probability that the
automaton started in state q1 reaches state q2 after reading the word w. Furthermore,
we assume in the rest of this section that we deal only with one-way randomized
automata that do not hang while reading the input:

Definition 3.1. Let M = (qa, δ, qs) be any randomized automaton such that δ(q, a)
is defined for all q and all a 6= a and that δ(q,a) is either undefined or leads to qa
with probability 1. Then we say that automaton M is non-hanging.

Restricting ourselves to non-hanging automata causes no loss of generality, since
any randomized automaton can be easily transformed into a non-hanging one by
adding a single new state.

Now we formalize the notion of confusion for randomized automata.

Definition 3.2. Consider any one-way randomized automaton M = (qs, δ, qa) over
a set of states Q. We say that a state q ∈ Q is confused with respect to language L
if and only if both of these two conditions hold:

• There exists some w1 ∈ L such that δ(qs,`w1)(q) 6= 0, i. e., the probability that
M started in qs reaches q after reading `w1 is nonzero.

• There exists some w2 /∈ L such that δ(qs,`w2)(q) 6= 0, i. e., the probability that
M started in qs reaches q after reading `w2 is nonzero.

Definition 3.3. Consider an one-way randomized automaton M = (qs, δ, qa) and let
Qc be the set of states of M that are confused with respect to language L. We say
that M is confused by an input word w with probability p with respect to language
L if the probability that M started in qs reaches some state q ∈ Qc after reading `w
is equal to p. Equivalently, this can be written as

p :=
∑
q∈Qc

δ(qs,`w)(q).

3.3. Lower Bounds on 1p1fas 65

Furthermore, we say that M is non-confused by w with probability p with respect
to L if M is confused by w with probability 1− p with respect to L.

Note that the definitions above are valid for any model of one-way randomized
automata. For 1p1fas, we say that a state of 1p1fa M accepting language L is confused
if it is confused with respect to L. In a similar way, we extend the notion of confusion
and non-confusion probability: We say that 1p1fa M accepting language L is (non-
)confused by an input word w with probability p, if it is (non-)confused by w with
probability p with respect to L.

Consider any 1p1faM accepting language L. It is easy to observe that any confused
state q of M is nonfinal, i. e., the probability of reaching the accept state from q at the
end of the input is zero. Otherwise, the automaton is not Monte-Carlo with one-sided
error. On the other hand, recall that 1p1fas work with bounded error. Hence, to prove
that a 1p1fa M cannot accept language L, it is sufficient to construct, for arbitrary
given ε, a word from L that confuses M with probability at least 1− ε.

More formally, we prove the following lemma, which is in some sense an analogy
of Lemma 2.3.

Lemma 3.8. The following statements are equivalent:

1. There exists a non-hanging 1p1fa M with m states that solves L.

2. There exists some ε > 0 and a non-hanging 1p1fa M with m states that solves
L such that, for every word w ∈ L, automaton M is non-confused by w with
probability at least ε.

3. There exists some ε > 0 and a non-hanging one-way randomized automaton M
with m states such that, for every word w ∈ L, automaton M is non-confused
by w with respect to L with probability at least ε.

Proof. [1 ⇒ 2] Assume that M = (qs, Q, qa) works with error bound ε. We claim
that M is non-confused by any word w ∈ L with probability at least ε. Assume that
this is not true, i. e., there exists some w ∈ L such that M is non-confused by w
with probability less than ε. Observe that any confused state q′ of M is non-final,
i. e., δ(q′,a) = ⊥ or δ(q′,a)(qa) = 0. Otherwise, there exists some word u /∈ L such
that δ(qa,`u)(q′) > 0, thus δ(qa,`ua)(qs) > 0, what contradicts to the fact that M
works with one-sided error. Now consider the probability that M accepts w. Every
accepting computation must enter the accept state from a non-confused state, since
every confused state is non-final. Hence, the probability that M accepts w is upper
bounded by the probability that M reaches a non-confused state after reading `w,
which is less than ε. But this is a contradiction with the error bound of M .

[2 ⇒ 3] Since every 1p1fa is a one-way randomized automaton, the implication
holds trivially.

[3 ⇒ 1] Consider a one-way randomized automaton M = (qa, Q, qs) that is, for
any word w ∈ L, non-confused by w with respect to L with probability at least ε. We
show that it is easily possible to transform M into a 1p1fa solving L with error bound

66 Chapter 3. Randomization

ε. This transformation is achieved by making every state of M that is non-confused
with respect to L and is reachable only by words from L a final state, and making
every other state a non-final state. More precisely, we modify the definition of the
transition function δ of M as follows. Let Qc ⊆ Q be the set of states of M confused
with respect to L, Qy ⊆ Q−Qc be the set of states that are reachable only by words
from L, i. e.,

Qy := {q ∈ Q | ∀w : δ(qs,`w)(q) > 0⇒ w ∈ L},

and Qn ⊆ Q −Qc be the set of states that are reachable only by words not from L,
i. e.,

Qy := {q ∈ Q | ∀w : δ(qs,`w)(q) > 0⇒ w /∈ L}.

Easily, Q is a disjoint union of Qc, Qy, and Qn (under the assumption that all states
in Q are reachable). Now we modify the transition function of M as follows:

δ(q,a)(qa) := 1 ∀q ∈ Qy
δ(q,a)(q′) := 0 ∀q ∈ Qy,∀q′ 6= qa
δ(q,a) := ⊥ ∀q ∈ Qn ∪Qc

It is easy to see that the modified M accepts all words not in L with zero probability.
Now consider any w ∈ L and analyze the probability that M accepts w. If M
reaches a non-confused state after reading `w, it accepts with probability 1, since
any such reached state is in Qy. The probability that M reaches a non-confused state
is, however, at least ε by the assumed lower bound on confusion probability of M .
Hence, M is a 1p1fa with one-sided error bounded by ε.

We prove Lemma 3.6 by contradiction: Assume that no small 1dfa can solve
L, but some small 1p1fa M can solve

∧
L. We show that M can be confused with

arbitrarily high probability, what directly contradicts to Lemma 3.8.8 At first, we
show that the automaton M can be confused from any starting state:

Lemma 3.9. Assume that no 1dfa with at most m states can solve language L. Let
M = (qs, δ, qa) be some non-hanging 1p1fa with at most m states that solves language∧
L. Consider any state q of M . There exists a word w1 ∈ L, a word w2 /∈ L, and

some state q1 of M such that both δ(q, w1#)(q1) and δ(q, w2#)(q1) are nonzero.

Proof. Let Q be the set of states of M . Let Q1 ⊆ Q be the set of states of M that
are reachable from q by word w1# for some word w1 ∈ L, i. e.,

Q1 = {q1 | ∃w1 ∈ L such that δ(q, w1#)(q1) > 0}.

Similarly, let Q2 ⊆ Q be the set of states reachable by reading w2# for some word
w2 /∈ L:

Q2 = {q2 | ∃w2 /∈ L such that δ(q, w2#)(q2) > 0}.
8In fact, we use only the first two statements of Lemma 3.8 in this section, but we need the third

statement later in Subsection 3.5.1.

3.3. Lower Bounds on 1p1fas 67

If Q1 ∩Q2 6= ∅, the statement of the Lemma holds. Hence, assume by contradiction
that Q1 and Q2 are disjoint. In that case, we can construct a 1dfa M ′ accepting L
with at most m states as follows. Automaton M ′ simulates any computation of M
that occurs with nonzero probability. More precisely, M ′ = (q′s, δ

′, q′a) is an automaton
over the set of states Q∪{q′s, q′a}, where q′s and q′a are some new states. The transition
function δ′ of M ′ is defined as follows:

δ′(q′a,`) = q
δ′(q′, a) = q′′ ∀a /∈ {`,a},∀q′ ∈ Q, for arbitrary q′′ such that δ(q′, a)(q′′) > 0
δ′(q′,a) = q′s ∀q′ such that δ(q′, #)(q1) > 0 for some q1 ∈ Q1

δ′(q′,a) = ⊥ otherwise

Note that the definition is correct: We assume that M does not hang, hence, for
every q′ ∈ Q and a /∈ {`,a}, there exists some q′′ such that δ(q′, a)(q′′) > 0.

Easily, if M ′ accepts word w, then δ(q, w#)(q1) > 0 for some q1 ∈ Q1. If w /∈ L,
then q1 ∈ Q2∩Q1 by the definition of Q2, what is a contradiction. Hence, w ∈ L. On
the other hand, assume that M ′ rejects word w ∈ L. The computation of M ′ hangs at
some state q′ while reading a and it holds that δ(q, w)(q′) > 0. Since we assume that
M does not hang, there is some q′′ such that δ(q′, #)(q′′) > 0, hence δ(q, w#)(q′′) > 0.
By definition of Q1, q′′ ∈ Q1. In this case, however, M ′ can not reject w, because the
third clause of δ′ applies.

Now we show the core of the proof of Lemma 3.6, i. e., we show how it is possible
to increase the probability of confusion arbitrarily.

Lemma 3.10. Assume that no 1dfa with at most m states can solve language L. Let
M = (qs, δ, qa) be some non-hanging 1p1fa with at most m states that solves language∧
L. There exists some constant α < 1 such that, for any u ∈

∧
L that non-confuses

M with probability p, there exists some w ∈ L such that uw# ∈
∧
L non-confuses M

with probability at most αp.

Proof. Since every finite automaton has finite number of states, Lemma 3.9 imme-
diately implies that there exists some fixed β > 0 such that, for every state q of
automaton M , there exist w1 ∈ L, w2 /∈ L, and a state q′ such that δ(q, w1#)(q′) ≥ β
and δ(q, w2#)(q′) ≥ β. Furthermore, if state q is reachable by some word z ∈

∧
L,

i. e., δ(qs, z)(q) > 0, state q′ is confused.
Assume that M is non-confused with probability p after reading word u ∈

∧
L.

Let q be the most probable non-confused state of M after reading u, i. e., q is the
non-confused state such that p′ := δ(qs,`u)(q) is maximal. Since M has at most
m states, it holds that p′ = δ(qs,`u)(q) ≥ p/m. As we have already shown, there
exist some w1 ∈ L, w2 /∈ L, and a confused state q′ such that δ(q, w1#)(q′) ≥ β and
δ(q, w2#)(q′) ≥ β.

Now we analyze the probability that M is non-confused after reading uw1#. This
probability can be expressed as p1 + p2 + p3, where:

68 Chapter 3. Randomization

• p1 is the probability that M is non-confused and not in state q after reading `u,
and non-confused after reading `uw1#. Obviously, we can upper bound p1 by
the probability that M is in a non-confused state other that q after reading `u.
Hence p1 ≤ p− p′.

• p2 is the probability that M is in a non-confused state q after reading `u, and is
non-confused after reading `uw1#. The probability that M is in q after reading
`u is equal to p′. If this happens, M ends in a confused state q′ with probability
at least β, hence p2 ≤ p′(1− β).

• p3 is the probability that M is confused after reading `u and non-confused after
reading `uw1#. Easily, if M is in a confused state after reading `u, then any
state reached after reading complete `uw1# is confused. Hence, p3 = 0.

To summarize, the probability that M is non-confused after reading uw1# is at most

p1 + p2 + p3 ≤ (p− p′) + p′(1− β) + 0 = p− p′β ≤ p(1− β/m).

Hence, the claim of the lemma follows by choosing α := 1− β/m.

The proof of Lemma 3.6 follows easily from Lemma 3.10. Indeed, assume by
contradiction that Lemma 3.6 does not hold, i. e., no 1dfa with at most m states
solves language L, but there is some 1p1fa with at most m − 1 states that solves∧
L. Easily, in such case there exists a non-hanging 1p1fa with at most m states that

solves
∧
L as well. Then, by Lemma 3.8(2), there exist some ε and an m-state 1p1fa

M that solves
∧
L such that M can not be non-confused with probability less than ε.

On the other hand, by applying Lemma 3.10 at most log ε/ logα + 1 times, we can
construct some word w ∈

∧
L that non-confuses M with probability less than ε, what

is a contradiction.

3.4 Rotating Automata with Linear Running Time

So far, we have analyzed various models of randomized finite automata without any
restriction on running time. We have shown that the use of randomization makes
finite automata much stronger. For example, 1p2

Ufas, rp2fas, sp2fas, and 2p2fas can
accept nonregular languages. Even the LasVegas randomization, which is the weakest
model of randomized computations, allows to construct exponentially more succinct
automata: 1d (1p0

N, rd (rp0
ε, sd (sp0

ε, 2d (2p0
ε.

This power, however, heavily depends on the possibility of very long computations.
Indeed, it is easy to see that the construction of [MS99], which proves that 2p1

ε = 2n,
can yield randomized automata with exponential expected running time, and the same
holds for the adaptation of this construction for rotating and sweeping automata, as
well as for the adaptation for LasVegas randomization [HS01b].

A natural question is to ask how much does the power of the randomized finite au-
tomata change if we restrict their running time. This corresponds to the well known

3.4. Rotating Automata with Linear Running Time 69

question about the complexity classes of Turing machines: While it is known that
LasVegas randomization is as strong as nondeterminism for space-restricted complex-
ity classes [MS99], no such result is known for time-restricted classes. In particular,
the question if p equals zpp is one of the most prominent open problems in complexity
theory.

We show that restricting running time of randomized finite automata significantly
decreases their power. We focus on proving lower bounds on state complexity of
randomized automata running in linear time. In particular, we show that there are
some language families solvable by small LasVegas automata in exponential time, but
not solvable by small Monte-Carlo automata working with two-sided bounded error
in linear time. Hence, we show that even the very powerful model with two-sided
error cannot compensate for the time restriction.

At first, we define time complexity of randomized finite automata, as well as the
corresponding time-restricted complexity classes.

Definition 3.4. Consider a randomized finite automaton M . For a given input word
z, automaton M induces a probability distribution over all possible computations; each
of them is either infinite, hangs, or accepts the input. The expected running time of
M on input z, denoted as TM (z), is defined as the expected value of the length of the
computation of M on z. It may happen that value TM (z) equals to infinity.

We say that randomized finite automaton M has time complexity TM (n) if and
only if

TM (n) = max
z∈Σn

(
TM (z)

)
,

i. e., TM (n) is the maximal expected running time of M over all words of length n.

Note that an automaton with time complexity T (n) must have expected running
time at most T (n) on any word of length n. In other words, a fast randomized
automaton must work fast also for words not in the solved language.

Definition 3.5. LetM = {Mi}i≥1 be a family of randomized automata. We say that
M works in linear time if and only if the time complexity of every Mi is linear, i. e.,
TMi(n) = O(n).

For every complexity class of randomized finite automata introduced so far, we
can define the corresponding class of automata working in linear time. We denote
such class by using a prefix lin-. In particular, we are interested in lin-rp2

N, lin-sp2
N,

lin-rp0
N, and lin-sp0

N, i. e., the classes of language families solvable by small rp2fas,
sp2fas, rp0fas, and sp0fas working in linear time and nonuniformly bounded error.

We also use the prefix lin- to denote an automaton with linear time complexity.
E. g., lin-rp2fa, lin-sp2fa, lin-rp0fa, and lin-sp0fa denote a rp2fa, sp2fa, rp0fa, and
sp0fa with linear time complexity, respectively.

Note that in our definition of automata families working in linear time, the con-
stant hidden in the O notation can differ for different automata in the family. In this
sense, the definition is nonuniform. Since we are interested primarily in lower bounds

70 Chapter 3. Randomization

on the state complexity, using this definition yields stronger results than imposing a
uniform constant.

Time complexity of randomized finite automata has been considered in previous
works. In [Fre81, Theorem 3], it was proven that 2p2fas can accept some non-regular
languages, but only if they have a possibility of infinitely long computations. If all
possible computations are finite, 2p2fas can no longer accept nonregular languages.
This result was furthermore strengthened in [DS90]. Here it was proven that any
2p2fa with polynomial time complexity accepts only regular languages. Neverthe-
less, Theorem 6.2 of [DS90] implies that 2p2fas running in polynomial time can be
exponentially more succinct than 2nfas.9

The previous results cited above show that randomized automata with restricted
running time have weaker computational power than those without the time restric-
tion. These results, however, provide only incomplete comparison with other models
of automata, such as the nondeterministic ones. For example, it is not clear if any
small 2nfa can be simulated by some small 2p2fa with polynomial time complexity.
Our results provide a partial negative answer for the corresponding problem of ro-
tating and sweeping automata. More precisely, we show that rotating and sweeping
randomized automata restricted to linear time can simulate their counterparts with
unlimited time only at the cost of exponential blowup in the number of states.

In the rest of this section, we present the lower bound on rp2fas restricted to linear
time. In particular, we prove a hardness propagation from 1p1

N to lin-rp2
N: If a language

family L is not in 1p1
N, then

∧
L is not in lin-rp2

N. When we combine this “upper level”
of hardness propagation with the “lower level” formulated in Corollary 3.7, we obtain
a language family in 1∆ − lin-rp2

N. This fact proves the separation result (vi) of
Figure 3.2b. Furthermore, it implies many other separation results, e. g., a separation
between lin-rp0

N and rp0
N, since 1∆ ⊆ rp0

N and lin-rp0
N⊆ lin-rp2

N.
The main idea of the hardness propagation from 1p1

N to lin-rp2
N is to adapt the

technique of generic strings (explained in Subsection 2.3.2) for randomized automata.
At first, we provide an intuitive explanation of how we can do this. In Subsection 3.4.2,
we formalize our arguments. Afterwards, we generalize the lower bound results for
sweeping automata in Section 3.5.

When proving the lower bound results, we assume that the transition function
of randomized finite automata can contain arbitrary real numbers; this assumption
is essential in our arguments. Nevertheless, since we are dealing with lower bounds,
the obtained result is stronger as it would be for the model of automata restricted
to rational numbers or coin flips. On the other side, it is not difficult to see that
the use of arbitrary real numbers is not required for the upper bounds of the proven
separation results.

9The time complexity of the witness automata family is claimed to be O(n2). This bound,
however, is valid for uniform definition of time complexity. Since the presented witness family consists
of one-word languages, the time complexity of the corresponding automata is linear according to our
definition.

3.4. Rotating Automata with Linear Running Time 71

3.4.1 Upper Level of Hardness Propagation: Intuition

In this subsection, we present the intuition behind the hardness propagation from 1p1
N

to lin-rp2
N. We do so by using arguments, mainly based on geometric representation,

that are rather incomplete. Nevertheless, we hope that they are helpful for under-
standing the main idea of the proof and its correspondence to the lower bound proofs
for rdfas based on generic strings. A precise formalization of the proof is done in
Subsection 3.4.2, where the geometric representation is no longer used.

The core idea of the generic strings technique for proving lower bounds on rdfas,
as explained in Subsection 2.3.2, is the following one: Consider a rdfa M accepting
language L. Take any word y. If M starts in some state q, it will reach some state q′

after reading y. Hence, every word y induces a mapping Q → Q, where Q is the set
of states of M . The image of Q under this mapping is denoted as lviewsM (y). We
are interested in such a word y ∈ L that minimizes the size of lviewsM (y). We call
such word as a generic word.

When dealing with rotating randomized automata, the configuration of the au-
tomaton M accepting language L after reading some input can be described as a
probability distribution over its states Q. Thus, if the automaton is started in some
probability distribution, after reading some (part of the) input word it ends in another
probability distribution. In this way, input words induce a mapping on probability
distributions. In the rest of this subsection, we use y to denote both the word y and
the mapping induced by y.

The set of all possible probability distributions over Q can be described as a set
of points (more precisely, a k-simplex) in the k-dimensional space Rk, where k = |Q|.
The mapping induced by y transforms this set S into another convex set of points
y(S) in Rk; see Figure 3.3. Easily, the set y(S) is a convex hull of at most k points,
which we call vertices. In an analogy to the case of deterministic automata we want
to pick y ∈ L such that the “size” of y(S) is minimal.

S

y

y(S)

Q

lviewsM (y)

y

(a) (b)

Figure 3.3: The idea of generic strings. (a) Deterministic scenario. (b) Adaptation
to the randomized scenario.

72 Chapter 3. Randomization

However, it is not immediately obvious how to measure the “size” of a convex ob-
ject in k-dimensional space. As a first guess, we can try to use the volume of the object.
Unfortunately, this is not very usable, since the definition of the volume depends on
the dimension we are working with. We say that a (convex) object has dimension d
if d is the minimal number such that the object is included in some d-dimensional
hyperplane. Any convex object of dimension d′ < d has zero d-dimensional volume,
but nonzero d′-dimensional volume. We can, however, solve this problem by mini-
mizing the dimension d of the object y(S) as the first criterion and minimizing its
d-dimensional volume as the second criterion.

Unfortunately, such a definition of a generic word is not sound. We can run
into the following problem. There can exist an infinite sequence of words that yield
objects with decreasing volume, yet there might not be a single word that yields
the object with minimal volume. It may happen that the sequence of words yields
objects with volumes that converge to some value that is never reached. To avoid
this problem, we work with the mappings S → S directly instead of working with
the words from L. Furthermore, we consider not just all mappings induced by words
from L, but also mappings that can be approximated by these mappings arbitrarily
well. Now, the set of all considered mappings is closed under limit, i. e., if we have a
sequence of convergent mappings, the limit of this sequence is also in the considered
set. Because of this property, we can pick a generic mapping G that transform S
into a set G(S) with minimal dimension (as the first criterion) and minimal volume
(as the second criterion). In this subsection, we use the concept of “mapping” and
“word” interchangeably. On the intuitive level, we do not distinguish between the
generic mapping G and the word whose mapping approximates G very well.

The main idea how the generic strings are used in the deterministic setting is the
following one. Consider a rdfa M accepting language

∧
L, and let G be a generic

word of M . For a word x, we look at the behavior of M on input word GxG. After
reading G, automaton M reaches a state from lviewsM (G). The remaining part
xG of the input induces a mapping lmapM (G, xG) on the set of states of M : if M
starts to read xG in state q, it finishes in lmapM (G, xG)(q). The properties of generic
strings ensure that if x ∈ L, then lmapM (G, xG) is a permutation. On the other side,
if x /∈ L, then lmapM (G, xG) is not injective, i. e., it makes the size of lviews(GxG)
smaller than the size of lviews(G). Using this properties, it is possible to build a
small ∩l1dfa for L.

Now we look at the randomized scenario. Consider a rp2fa M working in linear
time and accepting language

∧
L. Let G be a generic mapping of M . This mapping

induces an image G(S) of S; the image G(S) is an analogy of lviews used in the
deterministic case. Similarly as in the deterministic case, we consider the behavior of
the automaton on word GxG. The mapping xG (an analogy to lmap) maps G(S)
into a convex subset of G(S).

How do the properties of the mapping xG relate to the membership of x in L? We
can formulate a statement analogous to the deterministic case: If x ∈ L, the mapping
xG permutes the vertices of the convex object G(S). On the other hand, if x /∈ L,
the mapping xG maps G(S) into a convex object with significantly smaller volume,

3.4. Rotating Automata with Linear Running Time 73

i. e., the volume of (GxG)(S) is significantly smaller than the volume of G(S); see
Figure 3.4 for an illustration of this case.

Equivalently, this means that if x ∈ L, the mapping xG does not change the
volume of the convex object, and if x /∈ L, the mapping xG is far away from any
permutation on vertices of G(S): Obviously, if xG decreases the volume of the convex
object, it is not a permutation, since every permutation keeps the volume constant.
For the other direction, note that xG maps G(S) into a subset of G(S). Hence, if it
does not permute vertices, it must shrink the volume of the object, otherwise it would
not fit into G(S).

G G

S

x

G(S)
(GxG)(S)

Figure 3.4: The use of generic strings for randomized automata. Mapping xG sig-
nificantly reduces the volume (i. e., the length of the line segment) of G(S) into the
volume of (GxG)(S).

Why is this analogy correct? If x ∈ L, the mapping xG can not decrease the
volume of G(S), because of the way we selected the generic string. Indeed, the
mapping GxG is a candidate for generic mapping, because GxG ∈

∧
L, and the

volume (GxG)(S) is smaller than the volume of G(S). Hence, xG must permute the
vertices of G(S). For the other direction, consider some x /∈ L and assume that the
mapping xG is close to some permutation. Let us look at the word G(xG)k!. Since the
mapping xG is close to permutation of vertices of G(S), the mapping (xG)k! is close
to identity on G(S). So, the linear time randomized automaton can not distinguish
between G(xG)k! and G, because a constant number of traversals does not suffice to
amplify the probability of the correct answer. Since x /∈ L, this contradicts to the
correctness of the automaton.

In fact, it is not necessary to minimize the volume in the definition of the generic
mapping; minimizing the dimension is sufficient. To realize this, let us just look
at the arguments we used in the previous paragraph. If x /∈ L, the mapping xG
must be far away from any permutation on vertices of G(S) for the same reason.
So, consider the case x ∈ L. If the mapping xG decreases the volume of the convex
object, we can iterate the mapping xG to decrease this volume to zero. Hence, the
mapping G(xG)∗ = limi→∞G(xG)i induces a convex object of smaller dimension.
The mapping G(xG)∗ is a valid candidate for the generic mapping, because every

74 Chapter 3. Randomization

G(xG)i ∈
∧
L, and the set of all considered mappings is closed under limit. Hence,

we have a contradiction.
How can we exploit the properties of the generic mapping to prove the hardness

propagation lemma? In the deterministic case, there exist two states in lviews(G)
that are mapped to the same state by xG if and only if x /∈ L. Using this fact, we are
able to construct a ∩l1dfa for language L or, equivalently, a ∪l1dfa for L as follows:
For every pair of states from lviews(G), there is one state in the constructed ∩l1dfa
that simulates the original rdfa. If the two states collapse, the ∩l1dfa knows that
the input word is not in L.

Now we focus on the case of randomized automata. Let us assume that G(S)
is a d-dimensional simplex, i. e., it is a d-dimensional convex hull of exactly d + 1
vertices. As we see in the next section, we can always achieve this and it simplifies
our arguments. It is easy to see that every point in G(S) can be expressed as a convex
combination of the vertices of G(S); a convex combination of vertices v1, . . . , vd+1 is
any point a1v1 + . . .+ ad+1vd+1 such that all coefficients ai are between 0 and 1 and∑
i ai = 1. Hence, any point v in G(S) can be defined by the corresponding d + 1

coefficients and, since G(S) is a simplex, these coefficients are unique. We call these
coefficients as the convex coordinates of v with respect to G(S).

G(S)
(1, 0, 0)

(0, 1, 0)

(0, 0, 1)
(1

2 ,
1
2 , 0)

(GxG)(S)
(1

2 , 0,
1
2)

Gx

(1
3 ,

1
3 ,

1
3)

G

Figure 3.5: Convex coordinates with respect to G(S). Mapping xG is not a permu-
tation, hence some pair of vertices of G maps into points with a common non-zero
coordinate. E. g., (xG)(1, 0, 0) = (1

2 , 0,
1
2), (xG)(0, 1, 0) = (1

3 ,
1
3 ,

1
3) – both of the

resulting points have the third coordinate nonzero.

Easily, if xG is a permutation on vertices of G(S), then every vertex of G(S)
maps into some other vertex, so the coordinates of the resulting vertex are of the
form (0, . . . , 0, 1, 0, . . . , 0). On the other hand, it is possible to show that if xG is
not a permutation, then there are two vertices of G(S) that map into points with a
common non-zero coordinate. Furthermore, if xG is far away from any permutation,
this common non-zero coordinate is significantly large. This case is illustrated in
Figure 3.5.

Our goal is to build a small 1p1fa that detects if there exist two vertices of G(S)
that are mapped by xG to points with a common non-zero coordinate. This is easily
doable if we are able to construct a one-way randomized automaton that “calculates”

3.4. Rotating Automata with Linear Running Time 75

the convex coordinates of the vertices of (GxG)(S) with respect to G(S). More
precisely, we construct a following one-way randomized automaton M ′: For each
vertex vi of G(S) there is one special state qi of M ′. If M ′ starts in state qi and reads
an input word `xa, it ends in a probability distribution defined by the coordinates of
(GxG)(vi), i. e., the probability that M ′ is in state qj is equal to the j-th coordinate
of (GxG)(vi) with respect to G(S).

Once we have such an automaton M ′, we can build the 1p1fa M ′′ in an analogous
way as in the deterministic case. Automaton M ′′ randomly chooses two states qi, qj of
M ′ and simulates two runs of M ′, started from qi and qj , independently. If the same
state is reached after reading `xa, automaton M ′′ can be sure that x /∈ L, since the
mapping xG is not a permutation on vertices of G(S). On the other hand, if xG is far
away from any permutation, there exist two vertices vi, vj of G(S) that are mapped
by xG to points with a common non-zero coordinate, and both these points have this
coordinate significantly large. Thus, states qi, qj are transformed into the same state
with significant probability. Hence, automaton M ′′ accepts L with bounded error.

Finally, we discuss how to construct the one-way randomized automaton M ′ that
calculates the coordinates of (GxG)(S). The main idea is that M ′ simulates the
rotating automaton M on x in a straightforward way. To start the simulation, M ′

started in qi moves to a probability distribution defined by the (standard) coordinates
of vertex vi of G(S). More precisely, if q is the j-th state of M , then the probability
that M ′ enters q when reading ` in qi is equal to the j-th standard coordinate of
vertex vi. Intuitively, automaton M ′ transforms the convex coordinates with respect
to G(S) into the standard coordinates when reading `. Afterwards, M ′ simulates M
on the word x in a straightforward way.

When reaching a, automaton M ′ needs to simulate the behavior of M on G
(because M ′ is simulating mapping xG on the vertices of G(S)). Afterwards, M ′ has
to transform the calculated standard coordinates back into the convex coordinates
with respect to G(S). This is doable, since every state of the simulated automaton
M is transformed into a point from G(S) after reading G. Thus, automaton M ′

simulates the mapping G and converts the coordinates in one step while reading a.
Since the standard coordinates representing the j-th state q of M are

ej = (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0),

automaton M ′ moves from q into qi with probability equal to the i-th convex coordi-
nate of point G(ej).

To sum up, we have used the given rp2fa M accepting
∧
L in linear time to

construct a 1p1fa M ′′ accepting L with bounded error. The error bound depends
on the properties of the given automaton M , but it is constant for all words in the
accepted language. This is sufficient for us, since we are aiming for the hardness
propagation from a nonuniformly bounded randomized model. Furthermore, if the
given automaton M has k states, the constructed automaton M ′′ has O(k2) states.
Hence, if a language family

∧
L belongs to lin-rp2

N, then the family L belongs to 1p1
N.

76 Chapter 3. Randomization

3.4.2 Upper Level of Hardness Propagation: Formal Proof

In the previous subsection, we have presented all ideas that are necessary to prove
the hardness propagation from 1p1

N to lin-rp2
N. Nevertheless, the formulations we have

used are rather imprecise and incomplete. For example, we did not say what does
it mean that some value is “significantly” large, we have not proven several claimed
facts, etc.

In this subsection, we build a precise proof of the claimed result. Here, the ge-
ometric interpretation presented in the previous subsection is no longer necessary.
On the other hand, it is not difficult to see the geometric representation behind the
algebraic arguments we use.

Our goal is to prove that if
∧
L ∈ lin-rp2

N, then L ∈ 1p1
N. Nevertheless, we focus on

a language family slightly different from
∧
L for technical reasons: A language family

L# := (L#)∗ (3.4)

differs from
∧
L only in the missing leftmost delimiter. Easily, if

∧
L ∈ lin-rp2

N,
then also L# ∈ lin-rp2

N. Indeed, if some rotating randomized automaton M solves
a language

∧
L, it can be easily transformed into an automaton M ′ that accepts

language L# = (L#)∗. It is sufficient that when M ′ is going to read the first symbol
of the input word, it simulates M on #. I. e., when M ′ reads ` or a (and does not
end the computation), it simulates M on `# or a#, respectively.

Observation 3.3. If
∧
L ∈ lin-rp2

N, then L# ∈ lin-rp2
N.

In the sequel, we introduce the formal machinery needed to prove the hardness
propagation, together with some auxiliary lemmas. Afterwards, we prove that if
some language L# can be accepted by a small lin-rp2fa, then the language L can be
accepted by a small 1p1fa. This result, together with Observation 3.3, proves that if∧
L ∈ lin-rp2

N, then L ∈ 1p1
N.

It is easy to see that any randomized automaton with k states over alphabet Σ
can be transformed into an equivalent one with k+1 states that satisfies the following
property: The accept state qa is reachable only when reading a and the automaton
never leaves state qa (i. e., δ(qa, a)(qa) = 1 for all symbols a ∈ Σ ∪ {`,a}). We call
such automaton as an automaton with special accept state.

For technical reasons, we prove the lower bound for lin-rp2fas with special accept
states only. Since requiring the special accept state increases the state complexity by
at most one state, this assumption does not matter when dealing with the complexity
classes of the considered automata.

Transition Matrices

Consider any rotating randomized automaton M over an input alphabet Σ and a set
of k−1 states Q = {q1, . . . , qk−1}. The computation of M can be viewed as a process
of transforming probability distributions over Q ∪ {⊥}. At any computation step,

3.4. Rotating Automata with Linear Running Time 77

the configuration of the automaton is uniquely defined by a probability distribution
p = (p1, . . . , pk−1, pk) ∈ Rk, where, for any i < k, pi is the probability that M is in
state qi and pk is the probability that M has hanged. It holds that

∑k
i=1 pi = 1 and,

for each i, pi ≥ 0. In each step, p is transformed according to the transition function
of M into another probability distribution.

We can interpret the transition function δ of M as an assignment of a k × k
stochastic matrix to every a ∈ Σ ∪ {`,a}. In particular, p is transformed into pδ(a)
when reading a. The cell at i-th row and j-th column of the matrix δ(a) contains the
probability that M , being in state qi, reaches state qj after reading symbol a (to be
formally correct, we equate qk to ⊥, i. e., the “hanged state” of M).

The introduced notation allows us to associate every x = x1x2 · · ·xn ∈ Σ∗ with
a k × k stochastic matrix δx = δ(x1)δ(x2) · · · δ(xn), called the transition matrix of
x (with respect to M), describing the behavior of M when reading x: If M is in
distribution p ∈ Rk and reads x, it reaches the distribution pδx. It is easy to see that
δxy = δxδy. Note that such notation can be used for one-way randomized automata,
too.

We treat the transition matrices as points in the metric space of all k×k matrices.
We use the maximum norm for matrices; the norm ‖A‖ of matrix A is defined as the
maximum absolute value of some element of A.

When dealing with transition matrices, we use the following lemma:

Lemma 3.11. Let A, B, C, D be k × k stochastic matrices such that

‖C −A‖ , ‖D −B‖ ≤ ε ≤ 1.

Then ‖CD −AB‖ ≤ (2k + 1)ε.

Proof. Let EA := C−A and EB = D−B. Hence CD−AB = (A+EA)(B+EB)−AB
and we can estimate its norm as follows:

‖(A+ EA)(B + EB)−AB‖ = ‖AEB + EAB + EAEB‖ ≤
≤ ‖AEB‖+ ‖EAB‖+ ‖EAEB‖ ≤
≤ ε+ kε+ kε2 ≤ (2k + 1)ε

Closures of Languages

Consider any rp2fa M = (qs, δ, qa). Let L ⊆ Σ∗ be any language. By CL we denote
the set of all matrices A that can be approximated arbitrarily well (in terms of the
maximum norm) by a transition matrix of some word in L:

CL := {A ∈M | (∀ε > 0)(∃w ∈ L) ‖A− δw‖ ≤ ε}

where M is the set of all k× k matrices. We call CL as the closure of L (with respect
to M).

78 Chapter 3. Randomization

The closure of language formalizes the concept of “taking all mappings that are
approximable arbitrarily well”, which we presented in Subsection 3.4.1. Now we
present several properties of language closures that are not difficult to prove.

Lemma 3.12. The following properties of language closures hold for any languages
L,L1, L2:

1. If A ∈ CL, then A is a stochastic matrix.

2. If L1 ⊆ L2, then CL1 ⊆ CL2 .

3. CL is a closed set: For any convergent sequence {Ai}∞i=1 of matrices from CL,
we have limi→∞Ai ∈ CL.

4. CL is a compact set, i. e., it is possible to pick a convergent subsequence from
any infinite sequence of members of CL.

5. If A1 ∈ CL1 and A2 ∈ CL2 then A1A2 ∈ CL1L2 .

6. Let L ⊆ Σ∗ be a language over alphabet Σ such that # /∈ Σ. Let A1, . . . , Am
be matrices from the set CL# ∪ {δx# | x ∈ L}, i. e., every Ai either is in CL# , or
corresponds to x# for some x ∈ Σ∗ − L. If every Ai is in CL# , then

∏m
i=1Ai ∈

CL# . Otherwise,
∏m
i=1Ai ∈ CL# .

Proof. 1. If A is a transition matrix of some word, it is stochastic. Otherwise, A
is a limit of a sequence of stochastic matrices. Easily, this implies that A is
stochastic.

2. Let A ∈ CL1 . If A = δw for some w ∈ L1, then w ∈ L2, hence A ∈ CL2 . If A
is approximable arbitrarily well by transition matrices of words from L1, it is
trivially approximable by transition matrices of words from L2 as well.

3. Consider limi→∞Ai. This matrix is, by the definition of the limit, approximable
arbitrarily well by some matrix Ai. I. e., for any ε > 0, there is an Ai such that
‖A−Ai‖ < ε. By definition of CL, matrix Ai is approximable arbitrarily well by
some transition matrix δw for some w ∈ L. I. e., ‖Ai − δw‖ < ε. So, matrix A is
approximable arbitrarily well by δw, since ‖A− δw‖ ≤ ‖A−Ai‖+ ‖Ai − δw‖ ≤
2ε. Hence, A ∈ CL by the definition of language closures.

4. Set CL is closed. Furthermore, CL is bounded, since it contains only stochastic
matrices and every element of every stochastic matrix is from interval 〈0, 1〉.
Hence, CL is compact due to the Bolzano-Weierstrass theorem.

5. The claim follows from Lemma 3.11. More precisely, let A1 ∈ CL1 and A2 ∈
CL2 . We show that for every ε > 0 there exists some w ∈ L1L2 such that
‖A1A2 − δw‖ ≤ ε. By the definition of language closures, there exist w1 and
w2 such that ‖A1 − δw1‖ , ‖A2 − δw2‖ ≤ ε/(2k + 1). Let w := w1w2. Since
δw = δw1δw2 , the claim follows by applying Lemma 3.11 for A := δw1 , B := δw2 ,
C := A1, D := A2.

3.4. Rotating Automata with Linear Running Time 79

6. Let Ψi := L# for each i such that Ai ∈ CL# , and let Ψi := L# otherwise
(note that by L we mean the complement with respect to alphabet Σ, i. e.,
the language Σ∗ − L). Since Ai ∈ CΨi , applying the statement 5 yields that∏m
i=1Ai ∈ CΨ1...Ψm

.

If every Ψi equals to L#, it holds that Ψ1 . . .Ψm ⊆ L#, because the language L# is
closed under concatenation. Hence, the statement 2 implies that CΨ1...Ψm

⊆ CL# ,
so we have

∏m
i=1Ai ∈ CL# .

On the other hand, if some Ψi equals to L#, every word from language Ψ1 . . .Ψm

belongs to L#, because at least one #-delimited block of this word does not
belong to L. Hence, by the same argument as in the previous case, we have
CΨ1...Ψm

⊆ CL# , thus
∏m
i=1Ai ∈ CL# .

Consider a lin-rp2fa M with special accept state accepting language L with error
bounded by ε. Another property of closures is that if M works correctly, the closure
of L and the closure of its complement L are separated by some constant γ > 0, i. e.,
if A1 ∈ CL and A2 ∈ CL then ‖A1 −A2‖ ≥ γ. This constant γ depends on ε and on
the automaton M .

Informally, if this is not the case, then there are some x ∈ L and y /∈ L such
that x and y induce transition matrices that are arbitrarily close. Since M works in
linear expected time, it makes only constant number of traversals through the input
word, hence it must end the computation for x and y in arbitrarily close probability
distributions. Since M is a bounded-error automaton, it either accepts or rejects both
x and y, what is a contradiction.

Lemma 3.13. Let M be a lin-rp2fa with special accept state accepting language L.
Let CL (CL) be the closure of L (L) with respect to M . There exists some γ > 0 such
that for every A1 ∈ CL, A2 ∈ CL it holds that ‖A1 −A2‖ ≥ γ.

Proof. Let M accepts L with error bound ε. Assume that the statement of the
lemma does not hold, i. e., for every γ > 0 there exist A1 ∈ CL and A2 ∈ CL such that
‖A1 −A2‖ < γ. This, together with the definition of the language closure, implies
that for every γ > 0 there exist x ∈ L and y ∈ L such that ‖δx − δy‖ < γ.

Since M is works with an error bounded by ε, it accepts every x ∈ L and
rejects every y ∈ L with probability at least 1/2 + ε. Hence it must hold that
Pr[M accepts x]− Pr[M accepts y] ≥ 2ε.

Since M works in linear expected time, assume that the expected running time of
M on any input word z is bounded by c|z| for some constant c. This is equivalent to
the statement that the expected number of traversals of M through z is bounded by
c. Using the Markov bound, we obtain:

Pr[M accepts x] = Pr[M accepts x in < c/ε traversals]+
+ Pr[M accepts x in ≥ c/ε traversals] ≤

≤ Pr[M accepts x in < c/ε traversals] + ε

80 Chapter 3. Randomization

Hence, we have

2ε ≤ Pr[M accepts x]− Pr[M accepts y]
≤ Pr[M accepts x in < c/ε traversals] + ε− Pr[M accepts y in < c/ε traversals],

what is equivalent to

ε ≤ Pr[M accepts x in < c/ε traversals]−Pr[M accepts y in < c/ε traversals]. (3.5)

As M can accept only at the right endmarker, it can accept x only after t complete
traversals. The transformation of the probability distributions of the automaton after
doing t complete traversals is defined by the following stochastic matrix:

δ(`) (δxδ(a))t

where δ(a) is the transition matrix of M at symbol a.
Since M is an automaton with special accept state, it is easy to see that the

probability that x is accepted by M after at most t complete traversals is determined
by the element of the above-mentioned matrix at the row corresponding to qs (i. e.,
the start state of M) and the column corresponding to qa (i. e., the accept state of
M).

Since ‖δx − δy‖ < γ, we can use Lemma 3.11 to estimate the probabilities in (3.5):

ε ≤
∣∣Pr[M accepts x in < c/ε traversals]− Pr[M accepts y in < c/ε traversals]

∣∣ ≤
≤ (2k + 1)(2c/ε)γ.

As γ can be chosen arbitrarily small, we have a contradiction.

Auxiliary Lemmas

To prove the hardness propagation result, we need two more lemmas about the prop-
erties of stochastic matrices. The first one deals with determinants of stochastic
matrices; the proof is a straightforward induction on the matrix size. The second one
states a convergence property of Markov chains.

Lemma 3.14. Let A be a k× k nonnegative matrix such that the sum of elements in
any row is at most 1. Then |det(A)| ≤ 1. Furthermore, |det(A)| = 1 if and only if A
is a permutation matrix.

Proof. Induction on k. Case k = 1 is trivial. Let k > 1. Let ai,j be the value of A
in i-th row and j-th column. Let A1,j be the matrix obtained from A by deleting the
first row and i-th column. Obviously, A1,j fulfills the requirements of the lemma.

It holds that det(A) =
∑k
i=1(−1)i+1a1,idet(A1,i). Since |det(A1,i)| ≤ 1, it holds

that

|det(A)| ≤
k∑
i=1

a1,i|det(A1,i)| ≤
k∑
i=1

a1,i ≤ 1,

3.4. Rotating Automata with Linear Running Time 81

hence the first claim of the lemma holds.
Now we prove the second claim. If A is a permutation matrix, then there exists

a unique i such that a1,i = 1, a1,j = 0 for all j 6= i and A1,i is a (k − 1) × (k − 1)
permutation matrix. Hence

|det(A)| =
∣∣(−1)i+1a1,idet(A1,i)

∣∣ = |det(A1,i)| = 1.

To prove the other implication, assume that |det(A)| = 1, hence

1 ≤ |det(A)| ≤
k∑
i=1

a1,i|det(A1,i)|.

Since (by induction hypothesis) |det(A1,i)| ≤ 1 the previous statement holds only if∑k
i=1 a1,i = 1 and a1,i > 0⇒ |det(A1,i)| = 1. By induction hypothesis, |det(A1,i)| = 1

holds only if A1,i is a permutation matrix. If A1,i is a permutation matrix for some
i, then aj,i = 0 for all j > 1, hence A1,i′ is not a permutation matrix for any i′ 6= i.
Hence there is exactly one a1,i > 0, so a1,i = 1 and A1,i is a permutation matrix.
Thus A is a permutation matrix, too.

Lemma 3.15. Let A be a k × k stochastic matrix. The matrix A∞ := limi→∞Aik!

exists. Furthermore, there exists a k×k permutation matrix P and a (k−rank(A∞))×
rank(A∞) nonnegative matrix R with row sums equal to 1 such that A∞ satisfies

A∞ = P

(
I 0
R 0

)
P−1A∞

where I is the rank(A∞)× rank(A∞) identity matrix.

Proof. We rely on the statements from [Gan59, Chapter XIII]. From §7.5 and formula
(80), it follows that k! is a multiple of the period of A, hence the limit limi→∞Ai(k!)

exists. Thus, we can use the results from §7.2: there is a normal form of Ak! equal to

Ak! = P1

Q1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · Qg 0 · · · 0

Ug+1,1 · · · Ug+1,g Qg+1 · · · 0
...

. . .
...

...
. . .

...
Us,1 · · · Us,g Us,g+1 · · ·Us,s−1 Qs

P−1

1

for some permutation matrix P1 (note that PT = P−1 for every permutation matrix
P and that PBP−1 permutes both rows and columns of B by P). Hence we can

82 Chapter 3. Randomization

use [Gan59, (102)] to obtain:

A∞ = P1BP
−1
1 ; B =

Q∞1 · · · 0 0
...

. . .
...

...
0 · · · Q∞g 0

U ′g+1,1 · · · U ′g+1,g 0
...

. . .
...

...
U ′s,1 · · · U ′s,g 0

(3.6)

Furthermore, every Q∞i is a stochastic matrix with all rows identical. Since A∞ =
A∞A∞, it must hold that U ′g+i,j = U ′g+i,jQ

∞
j .

Let ri be the row of B that contains the first row of the submatrix Q∞i . It is easy
to see that every row Bj of the matrix B can be expressed as

∑g
i=1 cj,iBri such that

cj,i ≥ 0 and
∑g
i=1 cj,i = 1: If Bj corresponds to the row containing some submatrix

Q∞i , we can take cj,i = 1 and cj,i′ = 0 for all i′ 6= i. If Bj corresponds to the n-th
row of the submatrix

U ′m,1 . . . U
′
m,g0 = (U ′m,1Q

∞
1) . . . (U ′m,gQ

∞
g)0,

we can define cj,i as the sum of all elements in the n-th row of U ′m,i. Since B itself is
stochastic, such a definition satisfies the requirements cj,i ≥ 0 and

∑g
i=1 cj,i = 1.

Let P2 be a permutation that maps rows r1, . . . , rg to rows 1, . . . g (we do not care
about the rest of P2). Then it holds that

P2B =
(
I 0
R 0

)
P2B (3.7)

where I is the g× g identity matrix and R is a (k− g)× g matrix. Furthermore, each
row of R is equal to cj,1 . . . cj,g for some j, hence R is a nonnegative matrix with row
sums equal to 1.

Putting (3.6) and (3.7) together yields

A∞ = P1P
−1
2

(
I 0
R 0

)
P2P

−1
1 P1BP

−1
1 = P

(
I 0
R 0

)
P−1A∞

for the permutation matrix P := P1P
−1
2 . Since rank(A∞) = rank(B) = g and I is of

size g × g, the claim of the lemma follows.

Reduction to 1p1fas

Now we are ready to proceed to the core of the proof of the hardness propagation.
Let L be any language over alphabet Σ. In the rest of this subsection, let us assume
that a (k − 1)-state lin-rp2fa M with special accept state accepts language L#. We
denote the transition function of M as δ and the transition matrix of x with respect
to M as δx. All language closures considered are with respect to M . We show that
there exists a 1p1fa M ′ with O(k2) states that accepts language L. At first, we define
the generic matrix.

3.4. Rotating Automata with Linear Running Time 83

Definition 3.6. A k × k matrix G ∈ CL# is called generic if and only if rank(G) is
minimal among all members of CL# and it holds that

G = P

(
I 0
R 0

)
P−1G

for the rank(G) × rank(G) identity matrix I, some permutation matrix P and some
nonnegative matrix R with row sums equal to 1, respectively.

This definition corresponds to the ideas described in Subsection 3.4.1: The prop-
erty of the minimal rank corresponds to the requirement of minimal dimension of the
set G(S) (as used in Subsection 3.4.1), the second property represents the requirement
that G(S) is a simplex.

It is not difficult to prove that some generic matrix exists: since CL# is nonempty,
it contains a matrix G′ where G′ has minimal rank. Consider the matrix

G := lim
i→∞

G′ik!.

The existence of the limit follows from the first claim of Lemma 3.15. Since L# is closed
under concatenation, G′j ∈ CL# for any j due to Lemma 3.12(5, 2). Lemma 3.12(3)
yields that G ∈ CL# . Since rank(AB) ≤ min(rank(A), rank(B)) for any matrices A,
B, and (what is not difficult to check) G = GG′k!, it holds that rank(G) ≤ rank(G′).
By the minimality of rank(G′), we have rank(G) = rank(G′). Combined with the
second claim of Lemma 3.15, matrix G is generic.

For the rest of this subsection, we fix some generic matrix G, as well as the
corresponding matrices P , I, and R.

Let x be any word over the working alphabet of M . We consider the matrix Gδx#G
(note that this corresponds to the mapping discussed in Subsection 3.4.1). Using the
properties of generic matrices, we obtain the equality

Gδx#G = P

(
Sx 0
RSx 0

)
P−1G (3.8)

where Sx is some rank(G) × rank(G) stochastic matrix associated with the word x.
Indeed, by the properties of generic matrices, we have that

Gδx#G = P

(
I 0
R 0

)
P−1Gδx#P

(
I 0
R 0

)
P−1G =

= P

(
I 0
R 0

)(
Ax Bx
Cx Dx

)(
I 0
R 0

)
P−1G

84 Chapter 3. Randomization

for some matrices Ax, Bx, Cx, Dx (such that Ax has the same size as I and Cx has
the same size as R). Then it holds that(

I 0
R 0

)(
Ax Bx
Cx Dx

)(
I 0
R 0

)
=
(
Ax Bx
RAx RBx

)(
I 0
R 0

)
=

=
(

Ax +BxR 0
RAx +RBxR 0

)
=

=
(
Sx 0
RSx 0

) (3.9)

for Sx := Ax+BxR. Since the matrix described in (3.9) is defined as a multiplication
of several stochastic matrices, it must be stochastic, too. Hence, Sx is stochastic as
well.

We call Sx as a stamp of x. It can be shown that the stamp of x is unique because
it is a rank(G) × rank(G) matrix. Indeed, due to the second property of generic
matrices required by Definition 3.6, it holds

P−1G =
(
I 0
R 0

)
P−1G.

Combined with the fact that I and R are matrices with rank(G) = rank(P−1G)
columns, it implies that the first rank(G) rows of P−1G are linearly independent.
Suppose that there are two different stamps Sx, S′x of x. Then it holds

Gδx#G = P

(
Sx 0
RSx 0

)
P−1G = P

(
S′x 0
RS′x 0

)
P−1G,

hence we have (
Sx 0
RSx 0

)
P−1G =

(
S′x 0
RS′x 0

)
P−1G(

Sx − S′x 0
RSx −RS′x 0

)
P−1G = 0,

what contradicts to the linear independence of the first rank(G) rows of P−1G.
Nevertheless, we do not rely on the uniqueness of the stamp of x in our arguments;

it is sufficient that the stamp Sx satisfies condition (3.8).
Intuitively, the stamp of x describes the convex coordinates of the vertices of

G(S) mapped by xG, as illustrated in Figure 3.5 in Subsection 3.4.1. Each row of
Sx contains the convex coordinates of one mapped vertex. The first rank(G) rows of
P−1G contain the standard coordinates of the vertices of G(S).

In Subsection 3.4.1, we have described how the properties of a stamp of x differ
for x ∈ L# and for x /∈ L#. In the sequel, we formalize this description.

3.4. Rotating Automata with Linear Running Time 85

Lemma 3.16. Let Sx be a stamp of x. If x ∈ L, then Sx is a permutation matrix.
On the other hand, for some ε > 0 and every x /∈ L, Sx differs from any permutation
matrix P by at least ε, i. e., ‖Sx − P‖ ≥ ε.

Proof. Assume that the first statement does not hold, hence there exists some x ∈ L
such that Sx is not a permutation matrix. Consider the matrix

H := lim
i→∞

(Gδx#)ik!G.

Due to Lemma 3.15, H is well-defined, and due to Lemma 3.12(6, 3), H ∈ CL# . Using
(3.8), we can write

H = lim
i→∞

P

(
Sx 0
RSx 0

)ik!

P−1G = P

(
Sik!
x 0

RSik!
x 0

)
P−1G =

= P

(
S∞x 0
RS∞x 0

)
P−1
L GL

where S∞x := limi→∞ Sik!
x . Since Sx is a stochastic matrix, but not a permutation

matrix, due to Lemma 3.14 we have det(Sx) < 1, what implies that det(S∞x) = 0,
hence rank(Sx) < rank(G). Since it holds that

H = P

(
I 0
R 0

)(
S∞x 0
0 0

)
P−1G,

we have that rank(H) < rank(G), in contradiction with the genericity of G.
In the sequel, we focus on the second statement of the lemma. Let ε := γ/(2k +

1)k!+2, where γ is the constant provided by Lemma 3.13. Assume that the statement
does not hold for such ε, hence there exists some x /∈ L such that Sx is ε-close to
some permutation P1 matrix, i. e., ‖Sx − P1‖ < ε. Consider the matrix

X := (Gδx#)
k!
G.

Due to Lemma 3.12(6), X ∈ CL# . Using (3.8), we can express X as

X = P

(
Sk!
x 0

RSk!
x 0

)
P−1G.

Applying Lemma 3.11, we obtain∥∥Sk!
x − P k!

1

∥∥ < ε(2k + 1)k!−1.

Since P k!
1 is an identity matrix, we have (again by Lemma 3.11):

γ = ε(2k + 1)k!+2 >

∥∥∥∥P (Sk!
x 0

RSk!
x 0

)
P−1G− P

(
I 0
R 0

)
P−1G

∥∥∥∥ = ‖X −G‖

This, however, contradicts Lemma 3.13, because X ∈ CL# and G ∈ CL# .

86 Chapter 3. Randomization

In the sequel, we need to construct a small 1p1fa that can detect whether the
stamp of the input word is a permutation matrix or not. To do so, we employ a
one-way randomized automaton that “calculates” the stamp of the input word, as
discussed in Subsection 3.4.1.

Lemma 3.17. There exists a one-way randomized automaton MS with k states over
the alphabet Σ such that its transition matrix associated with `xa has the form

δMS (`xa) =
(
Sx 0
∗ ∗

)
,

where ∗ denotes some matrix and Sx is the left stamp of x. We call the automaton
MS as the stamp automaton of M .

Proof. Intuitively, MS running on the input x simulates M on yx#, where y is a word
such that δy is infinitely close to G. Afterwards, MS makes a suitable move on a. We
define its transition function as follows:10

δMS (`) = P−1G;
δMS (a) = δ(a) for a ∈ Σ;

δMS (a) = δ(#)P
(
I 0
R 0

)
.

Now we need to show that our construction is correct. Since all matrices involved
in the definition are stochastic, the definition of δMS is valid. Easily, the transition
matrix associated with `xa with respect to MS is

δMS (`xa) = P−1Gδx#P

(
I 0
R 0

)
.

Hence it is sufficient to check that

Sx :=
(
P−1Gδx#P

(
I
R

))
1...rank(G)

satisfies (3.8); A1...m denotes the matrix consisting of the first m rows of matrix A.
I. e., we need to show that

Gδx#G = P

(
Sx 0
RSx 0

)
P−1G.

10The transition function of MS is complete, so we may omit the row and the column corresponding
to ⊥ in the definition of MS . Hence, we define the value of transition function δMS (a) as a k × k
matrix instead of a (k + 1)× (k + 1) matrix.

3.4. Rotating Automata with Linear Running Time 87

It holds that

(
Sx 0
RSx 0

)
=

(
P−1Gδx#P

(
I
R

))
1...rank(G)

0

R

(
P−1Gδx#P

(
I
R

))
1...rank(G)

0

 =

=

(
P−1Gδx#P

(
I 0
R 0

))
1...rank(G)

R

(
P−1Gδx#P

(
I 0
R 0

))
1...rank(G)

 =

=

(
P−1

)
1...rank(G)

Gδx#P

(
I 0
R 0

)
R
(
P−1

)
1...rank(G)

Gδx#P

(
I 0
R 0

)
 =

=
(
I
R

)(
P−1

)
1...rank(G)

Gδx#P

(
I 0
R 0

)
=

=
(
I 0
R 0

)
P−1Gδx#P

(
I 0
R 0

)
Hence, by Definition 3.6 we have

P

(
Sx 0
RSx 0

)
P−1G = P

(
I 0
R 0

)
P−1Gδx#P

(
I 0
R 0

)
P−1G = Gδx#G.

We are ready to construct the 1p1fa M ′ that recognizes L. The idea behind M ′

is to simulate two independent runs of the stamp automaton MS . When reading
`, M ′ picks uniformly at random a pair of different states of MS among its first
rank(G) states and simulates the first step of MS . When reading a symbol from Σ,
M ′ makes independent random decisions in both simulated runs. When reaching a,
M ′ simulates the last step of MS . If both simulated runs of MS reach the same state,
the stamp of the input word x is not a permutation matrix, hence (by Lemma 3.16)
x /∈ L and M ′ accepts x. If the two reached states are different, M ′ hangs. The
described construction yields k2 states. In addition, we need the start state and the
accept state. Hence, the total number of states of M ′ is bounded by k2 + 2.

Now we discuss the correctness of the described construction. Easily, every word
x ∈ L is rejected by M ′: since Sx is a permutation matrix by Lemma 3.16, no
computation of M ′ accepts x. On the other hand, if x /∈ L, then, due to Lemma 3.16,
Sx is separated from every permutation matrix by some fixed ε > 0. In each row
of Sx, there is at least one element of value at least 1/rank(G), because Sx is a
rank(G) × rank(G) stochastic matrix. Since ε can be w.l.o.g. small enough (more
precisely, w.l.o.g. ε ≤ (rank(G)− 1)/rank(G)), there is at least one element of value

88 Chapter 3. Randomization

at least β := ε/(rank(G) − 1) in each row of Sx. (Note that rank(G) ≥ 2, since
otherwise Sx is a 1× 1 stochastic matrix and hence it is a permutation matrix.) If no
column of Sx contains more than one element of value at least β, every row and every
column of Sx contains exactly one element of value at least β; furthermore, each such
element has value greater than 1 − (rank(G) − 1)β = 1 − ε. Hence, if we round all
such elements to 1 and all other elements to 0, we obtain a permutation matrix P
such that ‖P − Sx‖ < ε, what contradicts Lemma 3.16. Thus, there exists a column
of Sx that contains at least two elements of value at least β. The automaton M ′ picks
the two rows containing these elements with probability

1(
rank(G)

2

) ≥ 1(
k
2

) ≥ 1
k2

and, if these rows are picked, the word is accepted with probability at least β2. Hence,
we have that every x /∈ L is accepted with probability at least

η :=
β2

k2
≥ ε2

k4
> 0.

To sum up, the arguments we have presented prove the following theorem:

Theorem 3.18. Let M be a (k − 1)-state lin-rp2fa with special accept state that
solves the language L#. Then there exists a 1p1fa M ′ with k2 + 2 states that solves
the language L.

Since any randomized automaton can be transformed into an equivalent automa-
ton with special accept state by adding at most one new state, we may apply the
result of Theorem 3.18 to language families:

Corollary 3.19. If L# ∈ lin-rp2
N, then L ∈ 1p1

N.

Combining the result with Observation 3.3, we obtain:

Corollary 3.20. If
∧
L ∈ lin-rp2

N, then L ∈ 1p1
N. Equivalently, if L /∈ 1p1

N, then∧
L /∈ lin-rp2

N.

At the end of the current section, we are ready to collect the results of the proven
hardness propagation:

Lemma 3.21. Consider language family J defined in (2.9). It holds that∧(∧
J
)
∈ 1∆− lin-rp2

N

Proof. Due to Lemma 2.19, J ∈ 1∆. Using the closure properties in Figure 2.4 [B6,
B1, B6], we have that

∧
J ∈ 1∆,

∧
J ∈ 1∆, and

∧(∧
J
)
∈ 1∆. On the other hand,

J /∈ 1d due to Lemma 2.19. By Corollary 3.7,
∧
J /∈ 1p1

N and, by Corollary 3.20,∧(∧
J
)
/∈ lin-rp2

N.

3.4. Rotating Automata with Linear Running Time 89

Note that any language family in 1∆, 1p1
N, as well as lin-rp2

N is closed under union
and intersection with any family in 1d. Hence, we can plug Lemma 2.1 in the proof
of the previous lemma to show that∧∨

J ∈ 1∆− lin-rp2
N.

Obviously, 1∆ ⊆ r∆. As proven in Subsection 3.2.1, r∆ = rp0
N = rp0

ε. Hence,
the language family

∧∨
J can be solved by a small family of rotating LasVegas

automata with uniformly bounded error, at the cost of exponential running time.11

At the same time, this language family can not be solved by small linear-time rotating
automata, even in the very strong model of two-sided error with nonuniform error
bound. This result immediately implies that lin-rp0

N (rp0
N = rp0

ε and lin-rp2
N (

rp2
N. Hence, restricting the running time to linear decreases the power of rotating

randomized automata. Furthermore, this restriction can not be compensated by using
less restrictive (i. e., more powerful) model of error bound.

The presented result has also an interesting relationship with the complexity the-
ory of randomized Turing Machines. It is known that the space-restricted complexity
classes of LasVegas Turing machines are equivalent to the nondeterministic classes:
Due to the well-known Immerman-Szelepczényi theorem, the complexity class of non-
deterministic Turing machines with space complexity f(n) is closed under comple-
ment for f(n) = Ω(log n). Any nondeterministic Turing machine working with space
complexity f(n) can be simulated by a bounded one-sided error Monte-Carlo Turing
machine within the same space complexity f(n) [MS99]. It is not difficult to see
that if there exist space-bounded one-sided error Monte-Carlo Turing machines for
language L and its complement L, then there also exists a space-bounded LasVegas
Turing machine for L.

This power of randomization, however, depends on the possibility of infinite (more
precisely, arbitrarily long) computations. Indeed, the construction of [MS99] produces
machines for which computations of any length are possible, although their probabil-
ities tend to zero with growing length. It is an interesting question if this property is
necessary, i. e., if LasVegas randomization can be of any significant help if the running
time is required to have some fixed upper bound.

Our results partially answer this question for the case of rotating finite automata
(we generalize it for sweeping automata in Section 3.5 as well). To see this, note that
any rotating randomized automaton that works with some fixed deterministic upper
bound on its running time cannot make more than constant number of traversals
through the input. Otherwise, there exists a computation that makes a non-constant
number of traversals, what immediately implies that there is a nonzero probability
that the automaton runs in a loop. Thus, the automaton can run in this loop arbitrar-
ily long with nonzero probability. The requirement of constant number of traversals
in the worst case is equivalent with the requirement of linear running time in the

11We can claim the exponential upper bound here, since it is not difficult to check that the
construction of [MS99] as well as its adaptation for LasVegas automata in [HS01b] yields automata
with expected running time at most exponential.

90 Chapter 3. Randomization

worst case for randomized rotating automata. We have proven that restricting the
automata to linear running time decreases their power, even if this restriction applies
to expected time only. Thus, imposing a deterministic upper bound on the running
time decreases their power as well. Hence, forbidding infinite computations may cause
exponential blowup in the state complexity of rotating randomized finite automata.

3.5 Sweeping Automata with Linear Running Time

Up to now, we focused on the rotating randomized automata with restricted running
time. Nevertheless, it is possible to generalize all these results for sweeping automata
as well. In this subsection, we explain how to do this generalization.

The results of hardness propagation for rotating randomized automata, i. e., Corol-
lary 3.7 and Corollary 3.20, are analogous to the results for rotating deterministic
automata, i. e., Corollary 2.5 and Corollary 2.12 (see Figure 2.3). In the structure of
the hardness propagation, the usage of ∩l1dfa in the deterministic case corresponds
to 1p1fa in the randomized case.

To extend our results for sweeping randomized automata, we need results analo-
gous to Corollary 2.7 and Corollary 2.14. To formulate the analogous claims, however,
we need a randomized automaton that corresponds to ∩21dfa. This new model needs
to have similar relationship to 1p1fa as ∩21dfa has to ∩l1dfa: Intuitively, we need to
somehow add a capability of reading the input in both directions to 1p1fa. To do so,
we define a direction-choosing automaton. This newly-defined model consists of two
components that work as one-way randomized automata. The first one, called the
left component, reads the input word from left to right and the second one, called the
right component, reads the input from right to left. At the beginning of the computa-
tion, one of the components is chosen uniformly at random. This component is then
started and the result of its computation is taken as the result of the computation of
the direction-choosing automaton. The direction-choosing automaton has to satisfy
the same requirements as a Monte-Carlo automaton with one-sided error, i. e., any
word not in the solved language is accepted with probability 0, and any word in the
language is accepted with probability at least ε for some fixed constant ε > 0.

Definition 3.7. A direction-choosing automaton (dcp1fa for short) M is a tuple
M = (M1,M2), where M1 and M2 are one-way randomized finite automata. We say
that M accepts language L if and only if there exists some ε > 0, called the error
bound of M , such that:

1. For any x /∈ L, it holds that

Pr[M1 accepts x] = Pr[M2 accepts xR] = 0

2. and, for any x ∈ L, it holds that

Pr[M1 accepts x] ≥ ε or Pr[M2 accepts xR] ≥ ε.

3.5. Sweeping Automata with Linear Running Time 91

Note that an equivalent definition can be obtained by requiring

1
2

Pr[M1 accepts x] +
1
2

Pr[M2 accepts xR] = 0

for any x /∈ L and requiring

1
2

Pr[M1 accepts x] +
1
2

Pr[M2 accepts xR] ≥ ε′

for any x ∈ L. This alternative definition follows the intuitive description provided
above more closely, but the definition we are using is slightly more convenient in our
proofs.

In the definition above, we focused on the bounded one-sided error Monte-Carlo
variant of the direction-choosing automaton. While it makes sense to define also other
variants, the bounded one-sided error Monte-Carlo is the one that fits in our hardness
propagation framework.

In this section, we deal with the class of language families that can be solved
by small dcp1fas with nonuniformly bounded error. Consistently with our previous
naming convention, we denote this class as dcp1

N. More precisely, we say that L =
(Ln)n≥1 ∈ dcp1

N if and only if there exists a sequence (Mn)n≥1 =
(
(ML

n ,M
R
n)
)
n≥1

of dcp1fas such that Mn solves Ln with error bounded by εn and the number of
states of ML

n as well as MR
n is bounded by some polynomial p(n). The error bound

εn can be different for various n. Again, it makes sense to define the other classes
corresponding to direction-choosing automata, but these classes are not needed in the
presented framework of hardness propagation.

In this section, we extend the hardness propagation results for sweeping automata.
At first, we focus on the “lower level” of hardness propagation in Subsection 3.5.1.
Here we prove a result analogous to Corollary 2.7 that shows how to propagate hard-
ness from 1p1

N to dcp1
N. Afterwards, we generalize the results of Section 3.4. We do

this in Subsection 3.5.2 by proving a result analogous to Corollary 2.14 that shows
how to propagate hardness from dcp1

N to lin-sp2
N. Results presented in this section

have been also published in [Krá09].

3.5.1 Lower Level of Hardness Propagation

In this section, we focus on the “lower level” of the hardness propagation, i. e., the
hardness propagation from 1p1

N to dcp1
N. We prove that if there is no small 1p1fa accept-

ing language L, then there is no small dcp1fa accepting language L ∧ LR. The result
is formulated as the following lemma, which is an analogy of Lemma 2.6. Informally,
the main idea of the proof is the following one: We use the concept of “confusion” as
introduced in Section 3.3. If there is a small dcp1fa M for language L ∧ LR, consider
its left component. Since there is no small 1p1fa solving L, this left component can
be, due to Lemma 3.8, confused with respect to L by arbitrarily high probability by
some word wL ∈ L. Similarly, the right component of M can be confused by some

92 Chapter 3. Randomization

wR ∈ L. Afterwards, it is not difficult to check that the word #wL#wR

R# cannot be
accepted by M with a significant probability.

Lemma 3.22. If there is no 1p1fa accepting language L with at most m states, then
there is no dcp1fa accepting language L ∧ LR such that both its left and its right
component have at most m− 1 states. An analogous result holds for L⊕ LR.

Proof. We focus on the claim for L∧LR, the proof for L⊕LR is analogous. Assume that
the statement does not hold, i. e., there is no 1p1fa accepting L with at most m states,
but there exists some dcp1fa accepting L∧LR such that both its components have at
most m− 1 states. In that case, there exists also a dcp1fa M = (ML,MR) accepting
L ∧ LR such that both ML and MR are non-hanging (in the sense of Definition 3.1)
and have at most m states. Assume that M works with error bound ε. It is not
difficult to see that there is no 1p1fa accepting #L with at most m states. Indeed, any
such 1p1fa M1 can be transformed into a 1p1fa M2 with at most m states that accepts
L. It is sufficient that M2 simulates M1 in a straightforward way, except that when
M2 reads `, it simulates M1 on `#. Hence, by the equivalence of statements 1 and 3
of Lemma 3.8 we have that for non-hanging one-way randomized automaton M ′ with
at most m states there is some word w′ ∈ #L that non-confuses M ′ with probability
less that ε. Since both ML and MR are non-hanging one-way randomized automata,
this gives us words wL, wR ∈ #L.

Consider word w := wL#wR

R. Easily, w ∈ L ∧ LR. Now we analyze the probability
that ML accepts w. Consider any accepting computation of ML and let q be the
state of ML after reading `wL. Easily, q is a non-confused state of ML with respect
to #L. Otherwise, the same computation can happen for some w′ := w′L#w

R

R with
nonzero probability, where w′L /∈ #L, i. e., w′ /∈ L∧LR. This, however, means that M
accepts some word not in L ∧ LR with nonzero probability, what contradicts to the
definition of dcp1fas.

Hence, the probability that ML accepts w is upper bounded by the probability
that ML is in a non-confused state after reading wL, which is less than ε by our choice
of wL. Using a symmetric argument, the probability that MR accepts w is less than
ε, too. This, however, contradicts to our assumption about error bound of M .

Using Lemma 3.22, we immediately obtain a hardness propagation result from 1p1
N

to dcp1
N.

Corollary 3.23. If L /∈ 1p1
N, then L ∧ LR /∈ dcp1

N and L ⊕ LR /∈ dcp1
N.

3.5.2 Upper Level of Hardness Propagation

In the sequel, we adapt the results proven in Section 3.4 for sweeping automata. In
particular, we prove the hardness propagation from dcp1

N to lin-sp2
N. All arguments

presented in Section 3.4 for rotating automata can be generalized in a straightforward
way. In this subsection, we describe the necessary changes to the proofs for rotating
automata presented in Subsection 3.4.2.

3.5. Sweeping Automata with Linear Running Time 93

Similarly as for the case of rotating automata, we will deal with L# instead of
∧
L.

It is easy to see that we can do this, because if
∧
L ∈ lin-sp2

N, then L# ∈ lin-sp2
N, too.

In other words, Observation 3.3 holds for sweeping automata, too. Hence, our goal is
to prove that if L# ∈ sp2

N, then L ∈ dcp1
N.

When proving lower bounds on linear-time randomized sweeping automata, we
use the notion of automata with special accept state introduced in Subsection 3.4. It
is easy to observe that, similarly as in the rotating case, any randomized sweeping
automaton with m states can be converted into an equivalent (m+1)-state automaton
with special accept state.

Transition Matrix Pairs

Similarly to the case of rotating automata, consider any sweeping randomized au-
tomaton M over an input alphabet Σ and a set of k − 1 states Q = {q1, . . . , qk−1}.
At any computation step, the configuration of the automaton is uniquely defined by
a probability distribution p = (p1, . . . , pk−1, pk) ∈ Rk, where, for any i < k, pi is the
probability that M is in state qi and pk is the probability that M has hanged. We
can interpret the transition function δ of M as an assignment of a k × k stochastic
matrix to every a ∈ Σ ∪`,a. In every computation step, the probability distribution
p describing the configuration of M is transformed into pδ(a), where a is the symbol
being read.

In the case of rotating automata, we associated every word x = x1x2 · · ·xn ∈ Σ∗
with its transition matrix δx that described the behavior of the automaton when
reading x. The difference between rotating and sweeping automata is that while
rotating automata always read the input word from left to right, sweeping automata
can read the word in both directions. For this reason, we associate the word x with two
transition matrices when dealing with sweeping automata. The left transition matrix
of x, denoted as δLx , describes the behavior of M while reading x from left to right;
it holds that δLx = δ(x1)δ(x2) · · · δ(xn). Next, we define the right transition matrix of
x, denoted as δRx , in a symmetric way: δRx describes the behavior of M while reading
x from right to left and it holds that δRx = δ(xn)δ(xn−1) . . . δ(x1). Hence, every
x ∈ Σ∗ can be associated with a pair of stochastic matrices Dx = (δLx , δ

R
x), called the

transition pair of x.
We extend the matrix operations +,−, · to matrix pairs as follows:

(A,B)± (C,D) := (A± C,B ±D), (A,B)(C,D) := (AC,DB).

It is easy to see that, for any x and y, it holds that δLxy = δLx δ
L
y and δRxy = δRy δ

R
x .

Hence, we have that Dxy = DxDy.
In Subsection 3.4.2, we considered a metric space of all k × k matrices. In the

sequel, we use a metric space of all pairs of k × k matrices instead. To be able to do
so, we define a maximum norm for matrix pair ‖(A,B)‖ as the maximum of ‖A‖ and
‖B‖, where ‖X‖ denotes the maximum norm of matrix X.

94 Chapter 3. Randomization

It is an easy observation that Lemma 3.11 holds for matrix pairs, too. For this rea-
son we invoke this lemma for matrix pairs in the sequel, even if the original statement
deals with matrices only.

Closures of Languages

It is possible to generalize the concept of language closures for transition pairs in a
straightforward way, just by replacing matrices by matrix pairs. Hence, for any sp2fa
M = (qs, δ, qa) and any language Ψ we can define the closure of Ψ with respect to M ,
denoted as CΨ, as

CΨ := {A ∈M | (∀ε > 0)(∃w ∈ Ψ) ‖A−Dw‖ ≤ ε},

where M is the set of all pairs of k × k matrices.
It is not difficult to check that all claims of Lemma 3.12 hold for our new definition

of language closures. For this reason, we reference this lemma also in connection with
sweeping automata. The Lemma 3.13 holds for sweeping automata as well. The proof
for sweeping automata is very similar, but not completely identical. For this reason,
we state the analogous lemma now:

Lemma 3.24. Let M be a lin-sp2fa with special accept state accepting language L
with bounded error. Let CL (CL) be the closure of L (L) with respect to M . There
exists some γ > 0 such that for every A1 ∈ CL, A2 ∈ CL it holds that ‖A1 −A2‖ ≥ γ.

Proof. We adapt the proof of Lemma 3.13. Let M be a lin-sp2fa with special accept
state accepting language L with error bounded by ε. Assume that the statement
of the lemma does not hold. Hence, for every γ > 0 there exist x ∈ L and y ∈ L
such that ‖Dx −Dy‖ < γ. Assume that the expected running time of M on any
input word z is bounded by c|z| for some constant c. Using the same arguments as
in Lemma 3.13, we have that

ε ≤ Pr[M accepts x in < c/ε traversals]− Pr[M accepts y in < c/ε traversals].
(3.10)

Again, M can accept only at the right endmarker. While every traversal of a ro-
tating automaton ends at the right endmarker, only every odd traversal of a sweeping
automaton does so. Hence, M can accept input word x only after 2l + 1 complete
traversals. The transformation of the probability distributions of the automaton after
doing 2l + 1 complete traversals is defined by the following stochastic matrix:(

δ(`)δLx δ(a)δRx
)l
δ(`)δLx δ(a)

where δ(a) is the transition matrix of M at symbol a.
Analogous to the case of rotating automata, the probability that x is accepted

by lin-sp2fa M with special accept state after at most 2l + 1 complete traversals is
determined by the element of the above-mentioned matrix at the row corresponding

3.5. Sweeping Automata with Linear Running Time 95

to qs (i. e., the start state of M) and the column corresponding to qa (i. e., the accept
state of M).

Since ‖Dx −Dy‖ < ε, we can do similar calculation as in the proof of Lemma 3.13
and estimate the sum (3.10) using Lemma 3.11. More precisely, let l be the largest
integer such that 2l + 1 < c/ε. Then, it holds that l < c/(2ε). Hence it is sufficient
to apply Lemma 3.11 4l + 2 < 2c/ε+ 2 times:

ε ≤ Pr[M accepts x in < c/ε traversals]−
Pr[M accepts y in < c/ε traversals] =

= Pr[M accepts x in ≤ 2l + 1 traversals]−
Pr[M accepts y in ≤ 2l + 1 traversals] ≤

≤ (2k + 1)(2c/ε+2)γ.

As γ can be chosen arbitrarily small, we have a contradiction.

Reduction to Direction-Choosing Automata

In the case of rotating automata, we have proven a reduction to 1p1fas. Now, we
generalize this result for the case of sweeping automata, i. e., we prove a reduction
to dcp1fas. As in the rotating case, let L be any language over alphabet Σ. In the
rest of this subsection, let us assume that a (k − 1)-state lin-sp2fa M with special
accept state accepts language L#. We denote the transition function of M as δ and
the transition pair of x with respect to M as Dx. All language closures considered
are with respect to M . We show that there exists a dcp1fa M ′ with O(k2) states that
accepts language L.

Analogously as in the rotating case, we can define matrix pairs that are left generic
and matrix pairs that are right generic. Afterwards, we define generic matrix pairs
as those that are simultaneously left generic and right generic.

Definition 3.8. A matrix pair (GL, GR) ∈ CL# is called left (right) generic if and only
if rank(GL) (rank(GR)) is minimal among all left (right) components of members of
CL# and it holds that

GL = PL

(
IL 0
RL 0

)
P−1
L GL(

GR = PR

(
IR 0
RR 0

)
P−1
R GR

)
for the rank(GL)×rank(GL) identity matrix IL (rank(GR)×rank(GR) identity matrix
IR), some permutation matrix PL (PR) and some nonnegative matrix RL (RR) with
row sums equal to 1, respectively.

A matrix pair is called generic if and only if it is both left and right generic.

To see that a generic matrix pair exists, we use similar arguments as for proving the
existence of a generic matrix for the rotating case. Since CL# is nonempty, it contains

96 Chapter 3. Randomization

a pair L = (LL, LR) such that LL has minimal rank and a pair R = (RL, RR) such
that RR has minimal rank. Consider the pair

G = (GL, GR) := lim
i→∞

(LR)ik!.

The existence of the limit follows from the first claim of Lemma 3.15; it is easy to
see that the lemma can be applied on both components of the matrix pairs. Since
L# is closed under concatenation, (LR)j ∈ CL# for any j due to Lemma 3.12(5, 2).
Lemma 3.12(3) yields that G ∈ CL# . Using the same arguments as in the rotating
case (rank(AB) ≤ min(rank(A), rank(B)) for any matrices A, B and G = G(LR)k!),
we have that rank(GL) = rank(LL) and rank(GR) = rank(RR). Again, combining
this result with the second claim of Lemma 3.15, we have that G is generic.

For the rest of this subsection, we fix some generic matrix pair G = (GL, GR), as
well as the corresponding matrices PL, IL, RL, PR, IR, and RR.

Let x be any word over the working alphabet of M . In an analogy to the stamp of
x used in the rotating case, we can define the left stamp SLx of x and the right stamp
SRx of x such that the following equalities hold:

GLδ
L
x#GL = PL

(
SLx 0

RLS
L
x 0

)
P−1
L GL (3.11)

GRδ
R
x#GR = PR

(
SRx 0

RRS
R
x 0

)
P−1
R GR (3.12)

The left stamp SLx (the right stamp SRx) is a rank(GL) × rank(GL) (rank(GR) ×
rank(GR)) stochastic matrix associated with the word x, respectively. The arguments
why SLx and SRx exist are completely analogous to the rotating case. The situation
with the uniqueness of SLx and SRx is analogous to the rotating case as well: It is
possible to prove the uniqueness of SLx and SRx , but this fact is not required in our
arguments.

Now we are ready to generalize Lemma 3.16.

Lemma 3.25. Let SLx (SRx) be a left (right) stamp of x. If x ∈ L, then both SLx and
SRx are permutation matrices. On the other hand, for some ε > 0 and every x /∈ L,
SLx or SRx differs from any permutation matrix P by at least ε (i. e.,

∥∥SLx − P∥∥ ≥ ε

or
∥∥SRx − P∥∥ ≥ ε).

Proof. Assume that the first statement does not hold, hence there exists some x ∈ L
such that w.l.o.g. SLx is not a permutation matrix. We define the matrix pair H in
an analogous way to the matrix H used in the rotating case:

H := lim
i→∞

(GDx#)ik!G.

Using the same arguments as in Lemma 3.16, H is well-defined and H ∈ CL# . Consider
the left component HL of H. We follow the proof of Lemma 3.16, using HL instead

3.5. Sweeping Automata with Linear Running Time 97

of H. This yields that det
(
(SLx)∞

)
= 0 and that

HL = PL

(
IL 0
RL 0

)(
(SLx)∞ 0

0 0

)
P−1
L GL.

Hence, we have that rank(HL) < rank(GL), in contradiction with the genericity of
G.

Next, we focus on the second statement of the lemma. Again, the proof is anal-
ogous to the proof of Lemma 3.16. Let ε := γ/(2k + 1)k!+2, where γ is the constant
provided by Lemma 3.24. Assume that the statement does not hold for such ε, hence
there exists some x /∈ L such that both SLx and SRx are ε-close to some permutation
matrix, i. e.,

∥∥SLx − P1

∥∥ < ε and
∥∥SRx − P2

∥∥ < ε. Consider the matrix pair

X := (GDx#)
k! G.

By the same arguments as in the proof of Lemma 3.16, we have that X ∈ CL# and
we can express the left component of X as

XL = PL

(
(SLx)k! 0

RL(SLx)k! 0

)
P−1
L GL.

Following the proof of Lemma 3.16, we obtain

γ = ε(2k + 1)k!+2 >

∥∥∥∥PL((SLx)k! 0
RL(SLx)k! 0

)
P−1
L GL − PL

(
IL 0
RL 0

)
P−1
L GL

∥∥∥∥ =

= ‖XL −GL‖

Since an analogous statement holds for the right component XR of X, we have that
‖X−G‖ < γ, which contradicts Lemma 3.24, because X ∈ CL# and G ∈ CL# .

Both the left and the right stamp can be “calculated” by a small one-way ran-
domized automaton, in the same way as the stamp can be calculated in the rotating
case. Hence, we are ready to generalize Lemma 3.17:

Lemma 3.26. There exists a one-way randomized automaton ML with k states over
the alphabet Σ such that its transition matrix associated with `xa has the form

δML(`xa) =
(
SLx 0
∗ ∗

)
,

where ∗ denotes some matrix and SLx is the left stamp of x. We call the automaton
ML as the left stamp automaton of M .

Analogously, there exists a one-way randomized automaton MR, called as the right
stamp automaton of M , such that its transition matrix associated with `xRa has the
form

δMR(`xRa) =
(
SRx 0
∗ ∗

)
,

where ∗ denotes some matrix and SRx is the right stamp of x.

98 Chapter 3. Randomization

The proof of Lemma 3.26 is analogous to the proof of Lemma 3.17.
The construction of the direction-choosing automaton M ′ that recognizes L is

similar to the construction of a 1p1fa in the rotating case: The left component of M ′

simulates the left stamp automaton of M and the right component of M ′ simulates
the right stamp automaton of M , in the same way as done in the rotating case. In
this way, both the left and the right component of M ′ have k2 + 2 states.

Consider any word x ∈ L. Since both the left stamp SLx and the right stamp SRx
of x are permutation matrices due to Lemma 3.25, we can use the same arguments
as in the rotating case to prove that both the left and the right component of M ′

accept x with zero probability. On the other hand, consider any x /∈ L. In this case,
Lemma 3.25 ensures that SLx or SRx is separated from any permutation matrix by at
least ε for some fixed constant ε > 0. Again, using the same arguments as in the
rotating case, we have that the left component of M ′ or the right component of M ′

accepts x with probability at least η for some fixed constant η > 0 that depends on k
and ε. Hence, we have shown that M ′ is a valid dcp1fa for language L in the sense of
Definition 3.7. Furthermore, both components of M ′ have number of states bounded
by a polynomial in k (more precisely, k2 + 2).

Hence, we can formulate the proven results in the next theorem, which is a sweep-
ing analogy of Theorem 3.18:

Theorem 3.27. Let M be a (k−1)-state lin-sp2fa with special accept state that solves
the language L#. Then there exists a dcp1fa M ′ such that both its left and its right
component have at most k2 + 2 states and M ′ solves language L.

The hardness propagation from dcp1
N to lin-sp2

N is a direct corollary of Theo-
rem 3.27:

Corollary 3.28. If L# ∈ lin-sp2
N, then L ∈ dcp1

N.

Again, we can combine the result with Observation 3.3:

Corollary 3.29. If
∧
L ∈ lin-sp2

N, then L ∈ dcp1
N. Equivalently, if L /∈ dcp1

N, then∧
L /∈ lin-sp2

N.

Next, we generalize Lemma 3.21 to separate 1∆ and lin-sp2
N:

Lemma 3.30. Consider language family J defined in (2.9). It holds that∧
(
∧
J) ∧ (

∧
J)R ∈ 1∆− lin-sp2

N

Proof. Due to Lemma 2.19, J ∈ 1∆. Using the closure properties in Figure 2.4
[B6, B2, B3, B1, B6], we have that

∧
J ∈ 1∆, (

∧
J)R ∈ 1∆, (

∧
J) ∧ (

∧
J)R ∈ 1∆,

(
∧
J) ∧ (

∧
J)R ∈ 1∆,

∧
(
∧
J) ∧ (

∧
J)R ∈ 1∆.

On the other hand, J /∈ 1d due to Lemma 2.19. Corollary 3.7 yields that
∧
J /∈

1p1
N, Corollary 3.23 yields that (

∧
J) ∧ (

∧
J)R

/∈ dcp1
N, and Corollary 3.29 yields that∧

(
∧
J) ∧ (

∧
J)R

/∈ lin-sp2
N.

3.5. Sweeping Automata with Linear Running Time 99

Again, we can use the fact that any language family from 1∆, 1p1
N, dcp1

N, as well
as lin-sp2

N is closed under union and intersection with any family from 1d. Hence, we
can apply Lemma 2.1 and Observation 2.1 to modify the proof of the previous lemma
to obtain ∧((∨

J
)
∨
(∨
J
)R
)
∈ 1∆− lin-sp2

N.

Similarly as in the rotating case, this result easily implies that lin-sp0
N (sp0

N = sp0
ε

and lin-sp2
N (sp2

N. Hence, restricting the running time to linear decreases the power
of sweeping randomized automata and this restriction cannot be traded for a more
powerful model of error bound.

Easily, the observation about the possibility of infinite computations that we dis-
cussed for the case of rotating automata holds for sweeping automata as well: The
power of sweeping randomized automata relies heavily on the possibility of arbitrarily
long computation. Forbidding the possibility of infinite computations, i. e., enforcing
a fixed deterministic upper bound on the computation length, may cause exponential
blowup in the state complexity of sweeping randomized finite automata.

100 Chapter 3. Randomization

Chapter 4

Conclusion

The main goal of this thesis is to present a complexity theory of finite automata. We
have used the approach suggested in [SS78] to build such a theory in an analogous way
to the well-known complexity theory of Turing machines. We have presented a com-
prehensive overview of the relationships between the introduced complexity classes of
finite automata. These results help us to understand the relationship between deter-
minism, nondeterminism and randomization. While we know only very few results
about the relationship between these models of computation for Turing machines, we
were able to show several facts for the simpler models of finite automata.

Many results used to build the map of the complexity classes of finite automata
have been known already, or followed from known facts about communication com-
plexity in a straightforward way. We have, however, proven several new results: We
have shown that determinism is strictly weaker than self-verifying nondeterminism for
rotating and sweeping finite automata of restricted size. To do so, we have introduced
the technique of hardness propagation and used the ideas of [Sip80b]. Furthermore,
using the hardness propagation technique, it is possible to construct witness language
families for several other previously known results in a systematic way. Since self-
verifying nondeterminism coincides with LasVegas randomization for rotating and
sweeping automata, our result shows the gap between determinism and LasVegas
randomization as well.

The most interesting new result proven in this thesis is the separation between
the sweeping randomized automata running in linear time and in unrestricted time.
We have shown that there exists a family of languages that can be accepted by
small sweeping LasVegas automata in exponential time, but it cannot be accepted
by small automata in linear time, even when using Monte-Carlo randomization with
two-sided bounded error. To prove this result, we have adapted the ideas of [Sip80b],
which can be used to prove lower bounds on rotating and sweeping deterministic
automata. After this adaptation, we have been able to use the technique of hardness
propagation to obtain lower bounds on Monte-Carlo automata with bounded two-
sided error running in linear time. This result also implies that the possibility of

101

102 Chapter 4. Conclusion

arbitrarily long computations is essential for the power of randomized automata.
Indeed, imposing a fixed upper bound on the length of the computation of a sweeping
randomized automaton implies linear running time. Hence, it implies a decrease in
power that can be traded only for exponential blowup in the size of the automaton.

In our work, we have used the concept of language families to introduce the com-
plexity classes of finite automata. Our results, however, can be adapted to a more
general concept of promise problem families, as introduced in [KKM08]. Here, in-
stead of working with languages, automata were defined to accept promise problems.
A promise problem P over an alphabet Σ consists of two disjoint sets PY , PN ⊆ Σ∗.
The set PY contains the yes-instances of P and the set PN contains the no-instances.
An automaton M solves P if it accepts all words in PY and does not accept any word
in PN ; the behavior of M on Σ∗ − (PY ∪ PN) can be arbitrary. The name promise
problem originates in the intuition that the automaton works under the promise that
its input word is in language PY ∪ PN .

By using the concept of promise problems, it is possible to obtain slightly stronger
results. Furthermore, some of the previous ad-hoc proofs for complexity classes sep-
arations (e. g. the separation between sd and s∆ presented in [KKM07]) can be re-
constructed by the hardness propagation technique used in the context of promise
problems.

On the other hand, the concept of promise problems is not widely used. Since our
main interest is the separation of complexity classes induced by languages instead of
promise problems, the gain from using promise problems is not essential. Hence, we
have decided to use the more standard approach of working with languages.

4.1 Open Problems

We have presented a comprehensive characterization of all introduced complexity
classes. Nevertheless, several problems remain open. At first, some closure properties
of complexity classes induced by non-randomized finite automata are not known, as
indicated by Figure 2.4.

Very few relationships between the complexity classes of two-way automata are
known. For example, we know that sd (2d, s∆ (2∆ = 2p0

U = 2p0
ε, and sn (2n =

2p1
U = 2p1

ε. Any separation between 2d, 2∆, and 2n would imply that 2d 6= 2n, what
is a prominent open problem, more than 30 years old. Furthermore, proving 2d 6= 2n
using only polynomially short words as witnesses would imply that l 6= nl.

Another open problem is the relationship between the complexity classes induced
by rotating, sweeping, and two-way Monte-Carlo automata with two-sided error. More
precisely, it is open whether any classes connected by a dotted arrow in Figure 3.1
collapse.

We have provided almost complete characterization of the complexity classes in-
duced by one-way randomized automata; see Figure 3.2. However, it is still open if
1p0

N and 1p2
ε are incomparable or if 1p0

N (1p2
ε. To attack this problem, one might try

to extend the separation 1p0
N 6⊆ 1p1

ε to 1p0
N 6⊆ 1p2

ε. To do so, it might be possible to

4.1. Open Problems 103

adapt the lower bound on 1p1
ε as provided by [JPS84, Theorem 3.1ii] to two-sided

Monte-Carlo randomization.
When introducing the randomized automata, we have mentioned three possible

ways how to use randomness: Allowing arbitrary real probabilities, restricting to
rational probabilities, and restricting to coin flips only. All relationship between
randomized complexity classes presented in this thesis hold for any of these models.
The relationship between these models themselves is, however, an open problem.

The main result presented in Chapter 3 is the separation between rotating au-
tomata running in exponential expected time and in linear expected time, as well as
the generalization of this result for sweeping automata. It would be very interesting
to extend this separation to automata running in exponential time and in polynomial
time, since polynomial time captures better the concept of efficient computability and
is a closer analogy to the well known p vs. zpp problem. This extension seems to be,
however, highly nontrivial.

The proof of lower bounds on the state complexity of rotating and sweeping au-
tomata running in linear expected time, as presented in Chapter 3, relies heavily on
the fact that the number of traversals of the bounded automaton is constant in the ex-
pected case. Unfortunately, it seems to be rather complicated to generalize this proof
for superlinear expected time; most probably, significantly new ideas are essential for
this approach to succeed.

As an another approach for extending the gap to polynomial time, one might
try to analyze the properties of rotating and sweeping randomized automata running
in superlinear but polynomial time. In an ideal case, it might be possible to prove
that any such automaton can be simulated by a linear-time automaton with only
polynomially more states. Proving such fact would immediately imply the exponential
gap in the state complexity between automata running in polynomial and exponential
time.

As a first attempt, one might try to prove that no randomized rotating or sweep-
ing automaton can run in polynomial but superlinear expected time. This attempt,
however, fails:

Theorem 4.1. For any positive integer k, there exists a rotating (sweeping) random-
ized automaton M over a unary alphabet working in expected time Θ(nk), where n is
the length of the input word.

Proof. We focus on the case of rotating automata; the case of sweeping automata is
very similar. We define a rotating automaton M with k+ 3 states q0, . . . , qk+2, where
state q0 is the start state. Since we are interested only in the running time of M
and not in the accepted language, automaton M has no accept state.1 Automaton
M works over a unary alphabet Σ = {a}. To define the behavior of M when reading
symbol a, we define its transition matrix δ(a), as introduced in Subsection 3.4.2.
Transition matrix δ(a) is the (k+ 4)× (k+ 4) stochastic matrix defined in Table 4.1.

1To make the definition of M formally consistent with the definition of randomized automaton
introduced in Chapter 3, it is sufficient to add a new accept state qa that is not reachable from any
of the k + 3 states.

104 Chapter 4. Conclusion

δ(a) :=

1
2

1
2 0 0 . . . 0 0 0 0 0

0 1
2

1
2 0 . . . 0 0 0 0 0

0 0 1
2

1
2 . . . 0 0 0 0 0

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 . . . 1
2

1
2 0 0 0

0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 . . . 0 0 1

2
1
2 0

0 0 0 0 . . . 0 0 0 1 0
0 0 0 0 . . . 0 0 0 0 1

Table 4.1: Definition of the transition matrix δ(a). Matrix δ(a) is a (k + 4)× (k + 4)
stochastic block-diagonal matrix. It consists of (k + 1) × (k + 1), 2 × 2, and 1 × 1
blocks corresponding to states q0, . . . , qk, states qk+1, qk+2, and ⊥.

δ(a) :=

0 . . . 0 0 0 1
...

. . .
...

...
...

...
0 . . . 0 0 0 1
0 . . . 0 1 0 0
0 . . . 0 0 0 1
0 . . . 0 0 0 1
0 . . . 0 1 0 0
0 . . . 0 0 0 1

Table 4.2: Definition of the transition matrix δ(a).

Automaton M ignores the symbol `, i. e., the transition matrix δ(`) is the (k +
4)× (k + 4) identity matrix. On symbol a, automaton M behaves deterministically:
If a is reached in qk−1 or qk+2, the automaton starts a new traversal in state qk+1.
Otherwise, the automaton halts. The corresponding transition matrix δ(a) is shown
in Table 4.2.

Let us consider the running time of M on input word an. Reading an induces
a transformation δn(a) of the probability distributions over the states of M . It is
straightforward to check that δn(a) satisfies the equality in Table 4.3.

Now let us calculate the expected running time of M on input an. Automaton M
starts in state q1. After the first traversal of the input, it ends in qk−1 with probability(
n
k−1

)
2−n. In this case, it starts new traversal in state qk+1. In any other case, what

happens with probability 1−
(
n
k−1

)
2−n, automaton M halts. Hence, the contribution

4.1. Open Problems 105

δn(a) =

2−n n2−n
(
n
2

)
2−n

(
n
3

)
2−n . . .

(
n
k−1

)
2−n ∗ 0 0 0

0 2−n n2−n
(
n
2

)
2−n . . .

(
n
k−2

)
2−n ∗ 0 0 0

0 0 2−n n2−n . . .
(
n
k−3

)
2−n ∗ 0 0 0

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 . . . n2−n ∗ 0 0 0
0 0 0 0 . . . 2−n ∗ 0 0 0
0 0 0 0 . . . 0 1 0 0 0
0 0 0 0 . . . 0 0 2−n 1− 2−n 0
0 0 0 0 . . . 0 0 0 1 0
0 0 0 0 . . . 0 0 0 0 1

Table 4.3: Matrix δn(a). Symbol ∗ denotes some value that we do not care about.

of this other case to the expected running time is(
1−

(
n

k − 1

)
2−n

)
n. (4.1)

For every traversal started in qk+1, automaton M reaches a in state qk+1 with
probability 2−n and it reaches a in state qk+2 with probability 1−2−n. In the former
case M halts, in the latter case M starts a new traversal from qk+1. Hence, if M is
started in qk+1, it terminates after exactly i traversals with probability pi−1(1 − p),
where p := 1−2−n. Thus, by a straightforward calculation we have that the expected
running time of M if started in qk+1 equals to

∞∑
i=1

nipi−1(1− p) =
n

1− p
= n2n. (4.2)

Equation (4.2) implies that the case when M does not halt after the first traversal
has the following contribution to the expected running time:(

n

k − 1

)
2−n (n+ n2n) =

(
n

k − 1

)
(n+ o(n)) (4.3)

Hence, putting (4.1) and (4.3) together yields the expected running time of M on
input an:(

1−
(

n

k − 1

)
2−n

)
n+

(
n

k − 1

)
(n+ o(n)) = n

(
1− o(n) +

(
n

k − 1

)
(1 + o(1))

)
=

= Θ(nk)

106 Chapter 4. Conclusion

The preceding theorem proves that there indeed exist rotating (sweeping) au-
tomata with polynomial but superlinear expected running time. However, the au-
tomata witnessing this fact presented in Theorem 4.1 are somewhat special. These
automata run for linear time with very high probability (more precisely, they make
only one traversal of the input word with probability 1 − Θ(nk)2−n) and they run
for exponential time with very low probability. Together, the overall running time is
Θ(nk), but any such automaton working with bounded error can be easily simulated
by an equivalent automaton in linear expected time. Indeed, the probability of a
superlinear computation is so low that it cannot affect the output of a bounded-error
automaton. Hence, it still might be feasible to prove the exponential gap in the size
between rotating (sweeping) automata running in polynomial and in exponential ex-
pected time by showing that such automata are not able to exploit superlinear but
polynomial expected running time at all.

Acknowledgement

I would like to thank my advisor Juraj Hromkovič for introducing me into the topic of
this thesis and for his support of my research. Next, I would like to thank Christos A.
Kapoutsis and Tobias Mömke for their cooperation in the automata-related research
and their help with clarifying the ideas presented in this thesis. I would like to thank
Rastislav Královič and Georg Schnitger for their valuable consultations. I am also
thankful to Hans-Joachim Böckenhauer and Dennis Komm for their help with the
German translation of the abstract.

Bibliography

[Amb96] Andris Ambainis. The complexity of probabilistic versus deterministic fi-
nite automata. In ISAAC ’96: Proceedings of the 7th International Sym-
posium on Algorithms and Computation, pages 233–238, London, 1996.
Springer-Verlag.

[Bab79] László Babai. Monte Carlo algorithms in graph isomorphism techniques.
Technical Report 79-10, Département de mathématiques et statistique,
Université de Montréal, 1979.

[Ber80] Piotr Berman. A note on sweeping automata. In J. W. de Bakker and
Jan van Leeuwen, editors, Proc. of the 7th International Colloquium on
Automata, Languages and Programming (ICALP 1980), volume 85 of
Lecture Notes in Computer Science, pages 91–97. Springer-Verlag, 1980.

[BFS86] László Babai, Péter Frankl, and János Simon. Complexity classes in
communication complexity theory. In SFCS ’86: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, pages 337–347,
Washington, D.C., 1986. IEEE Computer Society.

[Chr86] Marek Chrobak. Finite automata and unary languages. Theoretical Com-
puter Science, 47(2):149–158, 1986.

[Con01] Anne Condon. Bounded error probabilistic finite state automata, volume 2
of Handbook on Randomized Computing, pages 509–532. Kluwer, 2001.

[ĎHI00] Pavol Ďurǐs, Juraj Hromkovič, and Katsushi Inoue. A separation of deter-
minism, las vegas and nondeterminism for picture recognition. In COCO
’00: Proceedings of the 15th Annual IEEE Conference on Computational
Complexity, pages 214–228, Washington, D.C., 2000. IEEE Computer
Society.

[ĎHJ+01] Pavol Ďurǐs, Juraj Hromkovič, Stasys Jukna, Martin Sauerhoff, and
Georg Schnitger. On multipartition communication complexity. In Afonso
Ferreira and Horst Reichel, editors, Proc. of the 18th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 2001), volume 2010

107

108 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 206–217, London, 2001.
Springer-Verlag.

[ĎHRS97] Pavol Ďurǐs, Juraj Hromkovič, José D. P. Rolim, and Georg Schnitger. Las
Vegas versus determinism for one-way communication complexity, finite
automata, and polynomial-time computations. In Rüdiger Reischuk and
Michel Morvan, editors, Proc. of the 14th Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS 1997), volume 1200 of Lecture
Notes in Computer Science, pages 117–128, Berlin, 1997. Springer-Verlag.

[dLMSS56] Karel de Leeuw, Edward F. Moore, Claude E. Shannon, and N. Shapiro.
Computability by probabilistic machines. In in Automata Studies, pages
183–212. Princeton Univ. Press, 1956.

[DS90] Cynthia Dwork and Larry J. Stockmeyer. A time complexity gap for two-
way probabilistic finite-state automata. SIAM Journal on Computing,
19(6):1011–1123, 1990.

[Fre75] R. V. Freivald. Functions computable in the limit by probabilistic ma-
chines. In Proceedings of the 3rd Symposium on Mathematical Founda-
tions of Computer Science, pages 77–87, London, 1975. Springer-Verlag.

[Fre81] Rūsiņš V. Freivalds. Probabilistic two-way machines. In Mathematical
Foundations of Computer Science 1981. Proc. of the 10th Symposium
(MFCS 1981), volume 118 of Lecture Notes in Computer Science, pages
33–45, Berlin, 1981. Springer-Verlag.

[Fre08] Rūsiņš V. Freivalds. Artin’s conjecture and size of finite probabilistic
automata. In Arnon Avron, Nachum Dershowitz, and Alexander Ra-
binovich, editors, Pillars of Computer Science, volume 4800 of Lecture
Notes in Computer Science, pages 280–291. Springer-Verlag, 2008.

[Gan59] F. R. Gantmacher. The Theory of Matrices, volume 2. Chelsea, New
York, NY, USA, 1959.

[Gef07] Viliam Geffert. Magic numbers in the state hierarchy of finite automata.
Information and Computation, 205(11):1652–1670, 2007.

[GG66] Seymour Ginsburg and Sheila Greibach. Deterministic context free lan-
guages. Information and Control, 9(6):620–648, 1966.

[Gil77] John Gill. Computational complexity of probabilistic Turing machines.
SIAM Journal on Computing, 6(4):675–695, 1977.

[GKK+02] J. Goldstine, M. Kappes, C.M. Kintala, H. Leung, A. Malcher, and
D. Wotschke. Descriptional complexity of machines with limited re-
sources. Journal of Universal Computer Science, 8(2):193–234, 2002.

BIBLIOGRAPHY 109

[GMP03] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Converting
two-way nondeterministic unary automata into simpler automata. Theo-
retical Computer Science, 295:189–203, 2003.

[GMP07] Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini. Complement-
ing two-way finite automata. Information and Computation, 205(8):1173–
1187, 2007.

[HH73] Juris Hartmanis and Harry B. III Hunt. The lba problem and its impor-
tance in the theory of computing. Technical report, DSpace at Cornell
University (United States), 1973.

[HK03] M. Holzer and M. Kutrib. State complexity of basic operations on non-
deterministic finite automata. In Implementation and Application of Au-
tomata. Proc. of the 7th International Conference, CIAA 2002, volume
2608 of Lecture Notes in Computer Science, pages 61–79, Berlin, 2003.
Springer-Verlag.

[Hro05] Juraj Hromkovič. Design and Analysis of Randomized Algorithms: In-
troduction to Design Paradigms (Texts in Theoretical Computer Science.
An EATCS Series). Springer-Verlag, New York, 2005.

[HS96] Juraj Hromkovič and Georg Schnitger. Nondeterministic communication
with a limited number of advice bits. In STOC ’96: Proceedings of the
twenty-eighth annual ACM symposium on Theory of computing, pages
551–560, New York, NY, USA, 1996. ACM Press.

[HS01a] Juraj Hromkovič and Georg Schnitger. On the power of Las Vegas for
one-way communication complexity, OBDDs, and finite automata. Infor-
mation and Computation, 169(2):284–296, 2001.

[HS01b] Juraj Hromkovič and Georg Schnitger. On the power of Las Vegas II:
two-way finite automata. Theoretical Computer Science, 262(1-2):1–24,
2001.

[HS03a] Mika Hirvensalo and Sebastian Seibert. Lower bounds for las vegas au-
tomata by information theory. RAIRO Theoretical Informatics and Ap-
plications, 37(1):39–49, 2003.

[HS03b] Juraj Hromkovič and Georg Schnitger. Nondeterminism versus determin-
ism for two-way finite automata: Generalizations of sipser’s separation. In
Automata, Languages and Programming, Proc. of the 30th International
Colloquium, ICALP 2003, volume 2719 of Lecture Notes in Computer
Science, pages 439–451, Berlin, 2003. Springer-Verlag.

[Huf54] D. A. Huffman. The synthesis of sequential switching circuits. Technical
Report 274, Research laboratory of electronics, Massachusetts institute
of technology, 1954.

110 BIBLIOGRAPHY

[Jir05] Galina Jirásková. State complexity of some operations on binary regular
languages. Theoretical Computer Science, 330(2):287–298, 2005. Descrip-
tional Complexity of Formal Systems.

[JJS04] Jozef Jirásek, Galina Jirásková, and Alexander Szabari. State complexity
of concatenation and complementation of regular languages. In Imple-
mentation and Application of Automata. Proc. of the 9th International
Conference, CIAA 2004, volume 3317 of Lecture Notes in Computer Sci-
ence, pages 178–189, Berlin, 2004. Springer-Verlag.

[JPS84] Joseph JáJá, Viktor K. Prasanna, and Janos Simon. Information transfer
under different sets of protocols. SIAM Journal on Computing, 13(4):840–
849, 1984.

[Kap06] Christos A. Kapoutsis. Algorithms and lower bounds in finite automata
size complexity. PhD thesis, Cambridge, MA, USA, 2006. Advisor-
Michael Sipser.

[KKM07] Christos A. Kapoutsis, Richard Královič, and Tobias Mömke. An ex-
ponential gap between LasVegas and deterministic sweeping finite au-
tomata. In Juraj Hromkovič, Richard Královič, Mark Nunkesser, and
Peter Widmayer, editors, Proc. of the 4th International Symposium on
Stochastic Algorithms: Foundations and Applications (SAGA 2007), vol-
ume 4665 of Lecture Notes in Computer Science, pages 130–141, Berlin,
2007. Springer-Verlag.

[KKM08] Christos A. Kapoutsis, Richard Královič, and Tobias Mömke. On the size
complexity of rotating and sweeping automata. In Proc. of the 12th In-
terational Conference on Developments in Language Theory (DLT 2008),
pages 455–466, 2008.

[Kol72] A. N. Kolodin. Two-way nondeterministic automata. Cybernetics and
Systems Analysis, 10(5):778–785, 1972.

[Krá09] Richard Královič. Infinite vs. finite space-bounded randomized computa-
tions. In Proc. of the 24th Annual IEEE Conference on Computational
Complexity (CCC 2009), pages 316–325, Washington, D.C., 2009. IEEE
Computer Society.

[Leu01] Hing Leung. Tight lower bounds on the size of sweeping automata. Jour-
nal of Computer and System Sciences, 63(3):384–393, 2001.

[Mea55] G. M. Mealy. A method for synthesizing sequential circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[MF71] A. R. Meyer and M. J. Fischer. Economy of description by automata,
grammars, and formal systems. In Proc. of the 12th Annual Symposium

BIBLIOGRAPHY 111

on Switching and Automata Theory (SWAT 1971), pages 188–191, Wash-
ingtion, DC, USA, 1971. IEEE Computer Society.

[Mic81] Silvio Micali. Two-way deterministic finite automata are exponentially
more succinct than sweeping automata. Information Processing Letters,
12(2):103–105, 1981.

[Mon81] Burkhard Monien. On the LBA problem. In Fundamentals of Compu-
tation Theory. Proc. of the 1981 International FCT-Conference, volume
117 of Lecture Notes in Computer Science, pages 265–280, Berlin, 1981.
Springer-Verlag.

[Moo56] Edward F. Moore. Gedanken-experiments on sequential machines. Au-
tomata Studies, (34):129–153, 1956.

[Moo71] F. R. Moore. On the bounds for state-set size in the proofs of equivalence
between deterministic, nondeterministic, and two-way finite automata.
IEEE Transactions on Computers, 100(20):1211–1214, 1971.

[MP01] Carlo Mereghetti and Giovanni Pighizzini. Optimal simulations between
unary automata. SIAM Journal on Computing, 30(6):1976–1992, 2001.

[MPP01] Carlo Mereghetti, Beatrice Palano, and Giovanni Pighizzini. Note on the
succinctness of deterministic, nondeterministic, probabilistic and quan-
tum finite automata. RAIRO Theoretical Informatics and Applications,
35(5):477–490, 2001.

[MS99] Ioan I. Macarie and Joel I. Seiferas. Amplification of slight probabilistic
advantage at absolutely no cost in space. Information Processing Letters,
72(3-4):113–118, 1999.

[Paz71] Azaria Paz. Introduction to probabilistic automata (Computer science and
applied mathematics). Academic Press, Inc., Orlando, FL, USA, 1971.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control,
6(3):230–245, 1963.

[RS59] Michael O. Rabin and Dana Scott. Finite automata and their decision
problems. IBM Journal of Research and Development, (3), 1959.

[She59] J. C. Shepherdson. The reduction of two-way automata to one-way au-
tomata. IBM Journal of Research and Development, 3:199–201, 1959.

[Sip78] Michael Sipser. Halting space-bounded computations. In SFCS: Proc. of
the 19th Annual Symposium on Foundations of Computer Science, pages
73–74, Washington, D.C., 1978. IEEE Computer Society.

[Sip80a] Michael Sipser. Halting space-bounded computations. Theoretical Com-
puter Science, 10(3):335–338, 1980.

112 BIBLIOGRAPHY

[Sip80b] Michael Sipser. Lower bounds on the size of sweeping automata. Journal
of Computer and System Sciences, 21(2):195–202, 1980.

[SS78] William J. Sakoda and Michael Sipser. Nondeterminism and the size of
two way finite automata. In Proc. of the 10th Annual ACM Symposium
on Theory of Computing (STOC 1978), pages 275–286, New York, 1978.
ACM Press.

[Var89] M Y Vardi. A note on the reduction of two-way automata to one-way
automata. Information Processing Letters, (30):261–264, 1989.

[Wan92] Jie Wang. A note on two-way probabilistic automata. Information Pro-
cessing Letters, 43(6):321–326, 1992.

[Wat99] John Watrous. On quantum and classical space-bounded processes with
algebraic transition amplitudes. In FOCS: Proc. of the 40th Annual Sym-
posium on Foundations of Computer Science, pages 341–351, Washington,
D.C., 1999. IEEE Computer Society.

Curriculum Vitae

Last name: Královič
First name: Richard
Date of birth: 7 September 1980
Place of birth: Bratislava, Slovak Republic

Education

• June 1999: graduated from high-school (Gymnázium Jura Hronca, Bratislava)

• May 2004: Master degree in Computer Science from Comenius University

• September 2004 – June 2006: PhD student at Department of Computer Science,
Faculty of Mathematics, Physics and Informatics, Comenius University

• since June 2006: PhD student at ETH Zürich

Teaching

• September 2001 – May 2004: part time teaching assistant at Department of
Computer Science (course “Formal Languages and Automata”)

• September 2004 – June 2006: teaching assistant for courses “Introduction into
Distributed Algorithms” and “Effective parallel algorithms”.

Recognition

• 1997, International Olympiad in Informatics, South African Republic, silver
medal

• 1998, International Olympiad in Informatics, Portugal, gold medal

• 1999, International Olympiad in Informatics, Turkey, gold medal

• 1999, International Physics Olympiad, Italy, silver medal

• October 1998, November 2003 – Award of Slovak Ministry of Education (“Pa-
mätný list Svätého Gorazda”)

• November 2000 – Award of the rector of the Comenius University granted for
successfull representation of the University

• 2002, Student Scientific Conference: 2nd place in the section S4 (theoretical
informatics)

• 2003, ACM International Collegiate Programming Contest (world finals): 4th
place (gold medal)

• June 2004 – Prize of the rector of the Comenius University granted for the
oustanding master thesis

Activities

I have participated in the organization of the following competitions:

• 1999–2001: organizer of the Correspondence Seminar in Programming and the
Mathematical Olympiad (category P) in Slovakia

• 2000: deputy leader of the Slovak team in the Central European Olympiad in
Informatics (held in Cluj, Romania)

• 2001–2002: jury member of the Slovak finals of the Young Physicists Tourna-
ment

• 2001,2002,2004: organizer of the internet competition “Internet Problem Solving
Contest”

• 2002: organizer of the Central European Olympiad in Informatics (held in
Košice, Slovak Republic)

• since June 2006: organizer of the Swiss Olympiad in Informatics

• 2006: member of the Swiss team in the International Olympiad in Informatics
(held in Merida, Mexico)

• 2007: member of the Swiss team in the International Olympiad in Informatics
(held in Zagreb, Croatia)

• 2008: deputy leader of the Swiss team in the International Olympiad in Infor-
matics (held in Cairo, Egypt)

I have been a member of the Organizing committee of the following conferences:

• MFCS2003 (Bratislava)

• SOFSEM 2005 (Liptovský Ján)

• SIROCCO 2004 (Smolenice)

• SAGA 2007 (Zürich)

• ISSEP 2010 (Zürich)

I have participated in the following research projects:

• Grant VEGA 1/7155/20 (publication [17]).

• Grant VEGA 1/0131/03 (publication [4]).

• Grant APVT-20-018902 (publications [13,16]).

• Grant VEGA 1/3106/06 (publications [7, 10]).

• Grant UK/404/2006 (publication [9]).

• Grant APVV-0433-06 (publications [2, 3, 14,15]).

• Swiss National Science Foundation grant 200021-107327/1 (publications [11,
12]).

• SBF grant C 06.0108 (publications [6, 19]).

• Swiss National Science Foundation grant 200020-120073 (publication [18]).

• ETH grant TH 18 07-3 (publication [8]).

My other professional activities include:

• Since 2004 I am cooperating with American Mathematical Society as a reviewer
for the Mathematical Reviews.

• I have been a referee for various conferences (e. g. CIAA, DISC, DLT, ESA,
FCT, ICALP, ISAAC, LATA, MEMICS, MFCS, SIROCCO, SOFSEM, WG)
and journals (e. g. JOIN, TCS).

• I have participated in the translation of the European Computer Driving Licence
into Slovak language in 2003.

List of Publications

Journal Publications

[1] Hans-Joachim Böckenhauer, Juraj Hromkovič, Richard Královič, Tobias Mömke,
and Peter Rossmanith. Reoptimization of Steiner trees: Changing the terminal
set. Theoretical Computer Science, 410(36):3428–3435, 2009.

[2] Stefan Dobrev, Rastislav Královič, Richard Královič, and Nicola Santoro. On
fractional dynamic faults with thresholds. Theoretical Computer Science, 399(1-
2):101–117, 2008.

[3] Rastislav Královič and Richard Královič. Rapid almost-complete broadcasting in
faulty networks. Theoretical Computer Science, 410(14):1377–1387, 2009. Struc-
tural Information and Communication Complexity (SIROCCO 2007).

[4] Richard Královič. Time and space complexity of reversible pebbling. RAIRO –
Theoretical Informatics and Applications, 38:137–161, 2004. EDP Sciences.

Conference Publications

[5] Davide Bilo, Hans-Joachim Böckenhauer, Juraj Hromkovič, Richard Královič,
Tobias Mömke, Peter Widmayer, and Anna Zych. Reoptimization of Steiner
trees. In Joachim Gudmundsson, editor, Proc. of the 11th Scandinavian Work-
shop on Algorithm Theory (SWAT 2008), volume 5124 of Lecture Notes in Com-
puter Science, pages 258–269. Springer-Verlag, 2008.

[6] Davide Bilo, Hans-Joachim Böckenhauer, Dennis Komm, Richard Královič, To-
bias Mömke, Sebastian Seibert, and Anna Zych. Reoptimization of the short-
est common superstring problem. In Proc. of the 20th Annual Symposium on
Combinatorial Pattern Matching (CPM 2009), volume 5577 of Lecture Notes in
Computer Science, pages 78–91. Springer-Verlag, 2009.

[7] Hans-Joachim Böckenhauer, Juraj Hromkovič, Richard Královič, Tobias Mömke,
and Kathleen Steinhöfel. Efficient algorithms for the spoonerism problem. In
FUN with Algorithms. Proc. of the 4th International Conference, FUN 2007,
volume 4475 of Lecture Notes in Computer Science, pages 78–92, Berlin, 2007.
Springer-Verlag.

[8] Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard
Královič, and Tobias Mömke. On the advice complexity of online problems. In
Yingfei Dong, Ding-Zhu Du, and Oscar H. Ibarra, editors, Algorithms and Com-
putation, 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA,
December 16-18, 2009. Proceedings, volume 5878 of Lecture Notes in Computer
Science, pages 331–340. Springer-Verlag, 2009.

[9] Stefan Dobrev, Rastislav Královič, Richard Královič, and Nicola Santoro. On
fractional dynamic faults with threshold. In Structural Information and Com-
munication Complexity. Proc. of the 13th International Colloquium, SIROCCO
2006, volume 4056 of Lecture Notes in Computer Science, pages 197–211, Berlin,
2006. Springer-Verlag.

[10] Michal Forǐsek, Branislav Katreniak, Jana Katreniaková, Rastislav Královič,
Richard Královič, Vladimı́r Koutný, Dana Pardubská, Tomas Plachetka, and
Branislav Rovan. Online bandwidth allocation. In Algorithms - ESA 2007,
Proc. of the 15th Annual European Symposium, volume 4698 of Lecture Notes in
Computer Science, pages 546–557, Berlin, 2007. Springer-Verlag.

[11] Christos A. Kapoutsis, Richard Královič, and Tobias Mömke. An exponential
gap between LasVegas and deterministic sweeping finite automata. In Juraj
Hromkovič, Richard Královič, Mark Nunkesser, and Peter Widmayer, editors,
Proc. of the 4th International Symposium on Stochastic Algorithms: Founda-
tions and Applications (SAGA 2007), volume 4665 of Lecture Notes in Computer
Science, pages 130–141, Berlin, 2007. Springer-Verlag.

[12] Christos A. Kapoutsis, Richard Královič, and Tobias Mömke. On the size com-
plexity of rotating and sweeping automata. In Proc. of the 12th Interational
Conference of Developments in Language Theory (DLT 2008), pages 455–466,
2008.

[13] Rastislav Královič and Richard Královič. On semi-perfect 1-factorizations. In
Andrzej Pelc and Michel Raynal, editors, Structural Information and Communi-
cation Complexity, 12th International Colloquium, SIROCCO 2005, Mont Saint-
Michel, France, May 24-26, 2005, Proceedings, volume 3499 of Lecture Notes in
Computer Science, pages 216–230. Springer-Verlag, 2005.

[14] Rastislav Královič and Richard Královič. Rapid almost-complete broadcasting
in faulty networks. In Structural Information and Communication Complexity,
Proc. of the 14th International Colloquium, SIROCCO 2007, volume 4474 of
Lecture Notes in Computer Science, pages 246–260, Berlin, 2007. Springer-Verlag.

[15] Rastislav Královič and Richard Královič. Deterministic models of communication
faults. In Mathematical Foundations of Computer Science 2008, Proc. of the
33rd International Symposium, MFCS 2008, Lecture Notes in Computer Science,
pages 52–67, Berlin, 2008. Springer-Verlag.

[16] Rastislav Královič, Richard Královič, and Peter Ružička. Broadcasting with
many faulty links. In SIROCCO 10: Proc. of the 10th Internaltional Colloquium
on Structural Information Complexity, volume 17 of Proceedings in Informatics,
pages 211–222. Carleton Scientific, 2003.

[17] Richard Královič. Time and space complexity of reversible pebbling. In SOF-
SEM 2001: Theory and Practice of Informatics. Proc. of the 28th Conference

on Current Trends in Theory and Practice of Informatics Piestany, volume 2234
of Lecture Notes in Computer Science, pages 292–303, Berlin, 2001. Springer-
Verlag.

[18] Richard Královič. Infinite vs. finite space-bounded randomized computations.
In Proc. of the 24th Annual IEEE Conference on Computational Complexity
(CCC 2009), pages 316–325, Washington, D.C., 2009. IEEE Computer Society.

[19] Richard Královič and Tobias Mömke. Approximation hardness of the traveling
salesman reoptimization problem. In Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science (MEMICS 2007), pages 97–104, 2007.

Editorial Work

[20] Juraj Hromkovič, Richard Královič, Mark Nunkesser, and Peter Widmayer, ed-
itors. Stochastic Algorithms: Foundations and Applications, 4th International
Symposium, SAGA 2007, Zurich, Switzerland, September 13–14, 2007, Proceed-
ings, volume 4665 of Lecture Notes in Computer Science, Berlin, 2007. Springer-
Verlag.

[21] Juraj Hromkovič, Richard Královič, and Jan Vahrenhold, editors. ISSEP2010 –
Proceedings of Short Communications. ETH Zürich, 2010.

[22] Juraj Hromkovič, Richard Královič, and Jan Vahrenhold, editors. Teaching Fun-
damentals Concepts of Informatics, 4th International Conference on Informat-
ics in Secondary Schools – Evolution and Perspectives, ISSEP 2010, Zurich,
Switzerland, January 13-15, 2010, Proceedings, volume 5941 of Lecture Notes in
Computer Science, Berlin, 2010. Springer-Verlag.

Other

[23] Hans-Joachim Böckenhauer, Dennis Komm, Rastislav Královič, Richard
Královič, and Tobias Mömke. Online algorithms with advice. Technical Report
614, ETH Zürich, 2009.

[24] Richard Královič. Time and space complexity of reversible pebbling. Master’s
thesis, Comenius University, 2004.

