
IPSC 2015 June 20, 2015

Problem A: A+B

Our first problem today is as easy as a + b.

Problem specification

You are given a string of digits. Rearrange those digits to build two nonnegative integers a and b such
that the sum a + b is as large as possible.

Each number must consist of at least one digit. Leading zeros are not allowed, but the number zero
consisting of a single digit 0 is allowed. You have to use each digit exactly as many times as it occurs in
the given input string.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line. Each test case consists of a single line containing one string of digits. If there
are more than 2 digits in the string, not all of them are zeros.

In the easy subproblem A1 we have t = 900 and each test case consists of exactly 3 digits.
In the hard subproblem A2 we have t = 1000 and the number of digits in each test case is between

2 and 16, inclusive.

Output specification

For each test case, output a single line with a single integer: the largest sum that can be achieved.

Example

input

4

001

175

21

444444

output

10

76

3

44448

The first two test cases could appear in the easy input file a1.in, the other two could only appear in
the hard input file a2.in.

One optimal arrangement of digits for each example test case: 10+0, 71+5, 1+2, and 44444+4.

http://ipsc.ksp.sk/ page 1 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem B: Bawdy Boil-brained Bugbear

A certain gentleman shamelessly ate another gentleman’s cake. This inexcusable act led to a long
merciless battle between them. Of course, proper gentlemen never fight with their fists – they use carefully
chosen insults built of words from Shakespeare’s time. This is how the battle went on:

“Thou atest my cake, thou bawdy doghearted nut-hook!”
“Aye? But thou art a goatish half-faced bugbear.”
“Fain I am not a goatish doghearted puttock as thou.”
“Thou art a bawdy half-faced nut-hook.”
“Thou bawdy doghearted bladder!”
“Thou goatish half-faced puttock!”
“Thou spongy boil-brained bladder!”
“Thou bawdy boil-brained bugbear!”
“Fie, thou winnest!”

Problem specification

A valid insult consists of three words: The first one must be a simple insulting adjective, the second
one must be a compound insulting adjective, and the third one must be an insulting noun. For each of
these categories we give you a list of available words. Every word has a certain strength; the strength of
an insult is the sum of the strengths of its three words.

You are then given a list of insults. For each one of them you have to come up with an appropriate
response – an insult which is by 1 unit stronger than the challenging insult. You are not allowed to use
the same response more than once.

Input specification

The input consists of four parts. The first three parts describe the three wordlists that the insults
are built from. They have the same structure: The first line contains an integer m denoting the number
of words in the wordlist. Then m lines follow; on each line there is a word and its strength (a positive
integer). Words consist of lowercase English letters and at most one hyphen (-). Each word is between
1 and 15 characters long (inclusive). The words in all three wordlists are distinct.

The last part of the input describes a list of insults. On the first line there is an integer n denoting
the number of insults. On each of the following n lines there are three space-separated words. You are
guaranteed that the insults are valid with respect to the former wordlists.

In the easy subproblem B1 we have m = 50 and n = 500. Maximum word strength is 103.
In the hard subproblem B2 we have m = 10 000 and n = 10 000. Maximum word strength is 106.

Output specification

Output n lines. For each i, the i-th line should contain an insult whose strength is exactly one greater
than the strength of the i-th insult in the input. You cannot use the same insult more than once. (I.e.,
your output must contain n distinct lines.)

You are guaranteed that there is a sufficient amount of appropriate insults.

http://ipsc.ksp.sk/ page 2 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Example

input

3

bawdy 6

goatish 4

spongy 1

3

boil-brained 10

half-faced 6

doghearted 3

3

bladder 7

bugbear 3

puttock 7

7

spongy boil-brained bladder

goatish half-faced bugbear

bawdy half-faced bugbear

spongy doghearted puttock

goatish half-faced bugbear

goatish half-faced bugbear

bawdy doghearted bladder

output

bawdy boil-brained bugbear

goatish doghearted bladder

bawdy doghearted puttock

bawdy doghearted bugbear

spongy half-faced puttock

spongy boil-brained bugbear

goatish half-faced bladder

The strengths of the input insults are 18, 13, 15, 11, 13, 13, and 16.
The strengths of the output insults are 19, 14, 16, 12, 14, 14, and 17. Note that we had to use three

different insults with strength 14 each.

The conversation in the beginning of this task contains a sequence of valid insults if we consider the
wordlists from this sample input and an additional insulting noun ‘nut-hook’ of strength 3. Each insult is
an appropriate response to the previous one. There is no valid response to the last insult of strength 19.

http://ipsc.ksp.sk/ page 3 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem C: Chess Pieces

Yes, we do have an actual chess problem this year. In both subproblems we consider a standard chess
game. The game is played:

• on a standard 8× 8 chessboard from the standard initial configuration
• according to all standard chess rules that matter (e.g., including castling and en passant)

Problem specification

At the beginning of a chess game there are at most 8 pieces of each type on the board. For example,
there are 8 white pawns, 8 black pawns, 2 white rooks, and only 1 black queen. In the easy subproblem
C1 we want you to produce any valid sequence of chess moves that will lead to a board that contains
more than 8 pieces of any specific type.

At the beginning of a chess game there are 4 rooks on the chessboard: two white and two black ones.
In the hard subproblem C2 we want you to produce any valid sequence of chess moves that will lead
to a board that contains the largest possible total number of rooks.

Input specification

There is no input.

Output specification

Output a valid plain text (7-bit ASCII) file containing a sequence of alternating white’s and black’s
halfmoves in PGN notation. Any sequence of moves will be accepted as long as the final configuration
has the desired property. More technical details are given at the end of this problem statement.

Example output

1. a4 b5 2. axb5 Nc6 3. b6 Nf6 4. b7 Nd5 5. bxa8=N Ndb4 6. f3 g6

7. g4 Bh6 8. Bh3 Nd3+ 9. Kf1 O-O 10. Kg2

This is not a valid solution to any subproblem. It is just an arbitrary sequence of moves. The example
has valid syntax that can be correctly parsed. Note that in turn 5 the white pawn got promoted to a knight
instead of a queen.

Technical details

Your submissions will be parsed with the chess.pgn.read game method of the python-chess library,
version 0.8.1. Hence, we expect you to submit the record of a game in a valid PGN notation. The library
should be pretty tolerant – it should be able to parse anything valid, including comments, headers,
NAGs and games with multiple variations (i.e., branches of play). Still, we recommend that you just
submit a plain ASCII log that is as simple as possible. The example above probably contains all
the notation you’ll need to use.

In particular, if the notation of your game contains variations, we give you no guarantee about which
branch we will choose to evaluate.

http://ipsc.ksp.sk/ page 4 of 19 licensed under CC BY-SA 3.0

https://en.wikipedia.org/w/index.php?title=Portable_Game_Notation&oldid=627242513
https://github.com/niklasf/python-chess
https://en.wikipedia.org/w/index.php?title=Portable_Game_Notation&oldid=627242513
https://en.wikipedia.org/w/index.php?title=Numeric_Annotation_Glyphs&oldid=610758862


IPSC 2015 June 20, 2015

Problem D: Dijkstra’s Nightmare

Every computer scientist should be familiar with Dijkstra’s algorithm: the basic algorithm to compute
single-source shortest paths in a given graph. When executing the algorithm, we maintain a set of active
vertices. In each iteration, we select and process the active vertex with the smallest current distance.
When processing a vertex, we examine the outgoing edges. Whenever one of them can be used to improve
the distance to an adjacent vertex, we do so and mark that adjacent vertex as active.

It is well-known that the algorithm is efficient whenever all edge lengths are non-negative. The
reference implementation we provided in this problem runs in O(m log n) time for such graphs (where m
is the number of edges and n is the number of vertices).

Things start getting hairy once we allow edges with negative lengths. Finding the shortest simple path
(i.e., a path with no repeated vertices) in such a graph is actually an NP-hard problem. Some versions of
Dijkstra’s algorithm will terminate quickly for such graphs but sometimes they will give incorrect results.
This is not the case for our reference implementation. Our reference implementation is actually solving
a slightly different problem: for each vertex v, we are looking for the length of the shortest walk from
the starting vertex to v. (A walk is a path that may contain repeated vertices and edges. Note that if
all edge lengths are positive, the shortest walk has to be a simple path.)

Sometimes there is no shortest walk from the starting vertex to some vertex v, because for every walk
we can find an even shorter one. For such inputs our reference implementation never terminates.

Problem specification

In this problem, the word “graph” always denotes a directed weighted graph with no duplicate edges
and no self-loops. The letters n and m denote its numbers of vertices and edges. Vertices are numbered
0 through n− 1. The starting vertex is 0.

We want you to show that there are graphs for which Dijkstra’s algorithm terminates, but its time
complexity is exponential in the number of vertices.

The reference implementation contains a variable named PROCESSED VERTICES. In the easy sub-
problem D1, construct any valid graph (defined below) such that our implementation will terminate on
it after finitely many steps, and the value of PROCESSED VERTICES at the end will be at least 10 000.

In the hard subproblem D2, you are given several values p. For each p, construct any valid graph for
which our implementation will terminate after finitely many steps, and the value of PROCESSED VERTICES

at the end will be exactly p.

Input specification

You are given the files d.cc and d.py. These contain equivalent reference implementations in C++11
and in Python 2.

You are also given the file d2.in. The first line of this file contains an integer t specifying the number
of test cases. Each test case is preceded by a blank line. Each test case consists of a single line containing
the number p. You may assume that 1 ≤ p ≤ 10 000 000.

Output specification

In a valid graph, 1 ≤ n ≤ 60 and the length of each edge fits into a signed 32-bit integer variable.
Each graph should be output as a sequence of m+2 lines. The first of these lines should contain n, the

second line should contain m, and each of the following m lines should contain three integers describing
an edge – the vertex numbers of its two endpoints (between 0 and n− 1) followed by its length.

The output for the easy subproblem D1 should contain exactly one such graph. The output for the
hard subproblem D2 should contain a sequence of t such graphs. Do not output any empty lines between
them.

http://ipsc.ksp.sk/ page 5 of 19 licensed under CC BY-SA 3.0

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


IPSC 2015 June 20, 2015

Example (hard subproblem)

input

1

6

output

12

7

1 3 10

0 7 12

7 11 -4

0 3 9

3 7 1

11 1 12

0 11 9

For this graph, our implementation will process exactly 6 vertices: 0, 3, 11, 7, 11 (again), and 1.

http://ipsc.ksp.sk/ page 6 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem E: Enclosure

“Enclosure” is a simple turn-based game. The game is played by two players. One of them is you,
the other is an evil cat. The cat is located on a finite hexagonal grid. Whenever it’s the cat’s turn, the
cat moves from its current hex to one of the neighboring hexes. (The cat cannot remain still, it always
has to move.) Whenever it’s your turn, you get to click on one of the empty cells to block it off forever.
You start the game by blocking the first cell.

The cat wins the game if it reaches the border of the hexagon. You win the game if you block the cat
completely – i.e., you win if the cat doesn’t have any valid moves left.

A sample situation during the game is shown in the figure below. The blocked cells are filled. The
image also shows the coordinate system used in the game. The cat starts in the middle: at (10, 10).

Problem specification

Catch the cat!
(Also see below for the special Cat Challenge!)

Input specification

The cat’s moves are completely deterministic. You are given an implementation of the cat’s algorithm
in the file catlib.py. You are also given several tools to help you interact with the cat:

• The script cat-commandline.py is a simple command line interface to the library. It alternately
reads your move from the standard input and prints the cat’s move to the standard output.

• The script cat-pygame.py is a simple implementation of the game using the Pygame library.

• Whenever you win or lose a game, the game library automatically appends a log of the game to the
file log.txt. (So, for example, if you just won a game using the Pygame interface, you can find a
log of that game at the end of the log file.)

Output specification

The output for the easy subproblem E1 should contain any sequence of valid moves that catches
the cat. The output for the hard subproblem E2 should contain any sequence of at most 17 valid
moves that catches the cat. You may use any whitespace.

For a game in which you made m moves, the output should contain a sequence of 2m integers: the
coordinates of blocked cells, in order. It should not contain any parentheses, commas, or the strings “NEW
GAME” and “WINNER:” that are added to the game log by the library.

http://ipsc.ksp.sk/ page 7 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Cat Challenge!

This problem comes with an additional special challenge! If you are bored with the rest of the problem
set, you can keep looking for the shortest solution you can find.

Note that the contest system will only allow you to submit a correct solution to each subproblem
once. Once you solve both subproblems, you will not be able to make additional submissions. If you later
improve your solution, you may e-mail the new, shorter game log to ipscreg@ksp.sk with the subject
“Cat Challenge”.

At the end of IPSC 2015 we will announce the three teams with the shortest solutions (breaking ties
by submission time / e-mail reception time). The top three teams will also be enshrined for all eternity
in the solution booklet.

http://ipsc.ksp.sk/ page 8 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem F: Familiar Couples

The rural village Spǐsský Štvrtok is populated by n married couples – n men and n women, both
labeled from 1 to n in such a way that for each i, man i is married to woman i.

Whenever two men meet in the village pub, they become friends. Friendship lasts forever. We say
two men are acquaintances if they are friends, or if they have a mutual acquaintance. This means that
if man a and man b become friends, they also become acquaintances, and all acquaintances of a become
acquainted with all acquaintances of b. Similarly, two women can become friends. We say two women
are acquaintances if they are friends, or if they have a mutual acquaintance.

Couples living in the village can be familiar with each other. We say couple a is familiar with couple
b (they’re a “familiar pair of couples”) if man a and man b are acquaintances, and woman a and woman
b are also acquaintances.

Problem statement

At the beginning, no two people are friends with each other. Then q events happen in sequence. Each
event is either a meeting between two men or a meeting between two women. If the two people who met
aren’t friends yet, they become friends.

After each event, compute the number of familiar pairs of couples. That is, count the number of pairs
a, b (a 6= b) such that man a is acquainted with man b and woman a is acquainted with woman b. Note
that the pairs are unordered – for example, 1, 2 is the same pair as 2, 1.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case starts with a line containing the integers n and q. The i-th of the following q lines
contains integers ti, ai, bi (1 ≤ ti ≤ 2; 1 ≤ ai, bi ≤ n; ai 6= bi) describing event i. If ti is 1, man ai and
man bi meet. If ti is 2, woman ai and woman bi meet.

In the easy subproblem F1, 2 ≤ n ≤ 1 500 and 1 ≤ q ≤ 2 000.
In the hard subproblem F2, 2 ≤ n ≤ 1 000 000 and 1 ≤ q ≤ 1 000 000. Because the input file size

for subproblem F2 is about 50 MB, you cannot download it directly. Instead, we have provided a small
Python 2 program that will generate the file f2.in when executed.

Output specification

For each test case: Let yi be the number of familiar pairs of couples after event i. Then, let zi be
i · yi. Output one line with a single number: the sum of z1 + . . . + zq modulo 109 + 7.

http://ipsc.ksp.sk/ page 9 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Example

input

1

3 5

1 1 2

2 1 3

1 2 3

1 3 1

2 2 1

output

22

After event 3, couple 1 is familiar with couple 3. After event 5, all couples are familiar with each
other. Together, we get 1 · 0 + 2 · 0 + 3 · 1 + 4 · 1 + 5 · 3 = 22.

http://ipsc.ksp.sk/ page 10 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem G: Generating Synergy

You are working for IPSCorp, a multinational corporation which is revolutionizing the world by
providing end-to-end solutions for high-impact paradigm shifts. This important task requires that key
players touch base with industry leaders to incentivize core competencies and faciliate organic growth.

As you can probably guess from this description, most of IPSCorp consists of layers and layers of
incompetent managers. Since they need to look productive, they spend their workdays attending endless
meetings and sending pointless memos to their subordinates. Making business decisions is hard, so the
memos are always about trivial issues such as the office dress code.

When a manager writes a memo, he only sends it to his direct reports (i.e. subordinates of which
he is the direct supervisor). They read the memo and forward it to their own direct reports. This way,
the memo goes deeper and deeper in the company hierarchy. But after the memo has been forwarded a
certain number of times, the recipients will just ignore it, hoping that the original author won’t notice.
This depends on the memo’s general tone, number of exclamation marks, firing threats, and so on. We
call the maximum number of forwards the “importance level”.

A memo of importance level 0 (“I think we should wear red ties.”) only affects the memo’s author –
he starts wearing a red tie, but even his direct reports ignore it. A memo of importance level 1 (“I want
everyone in this room to wear blue ties from now on.”) affects the author and his direct reports, but
nobody else cares. A memo of importance level 2 (“New department policy: only green ties allowed!”)
also affects the direct reports of the author’s direct reports. And so on.

Problem description

IPSCorp consists of n employees, labeled from 1 to n and organized in a hierarchical tree. All
employees own ties of c colors labeled from 1 to c.

At the beginning, everyone is wearing a tie of color 1. Then, q events happen. Events are of two
types: Either a given person writes a memo of a given importance level, and its recipients (including the
person who wrote it) start wearing ties of a given color, or we want to know what tie a given employee
is wearing at the moment.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Every test case starts with a line containing the integers n, c and q. The next line contains n − 1
integers named s2 to sn, where si is the supervisor of employee i (1 ≤ si < i). Employee 1 is the company
president and has no supervisor.

The i-th of the following q lines contains three integers ai, li, ci describing event i (1 ≤ ai ≤ n; 0 ≤
li ≤ n; 0 ≤ ci ≤ c). If ci is nonzero, it means person ai sent a memo of importance level li saying the
new tie color is ci. If ci is zero, then li is also zero, and it means you have to find the tie color worn by
person ai.

In the easy subproblem G1, 1 ≤ n, c, q ≤ 10 000.
In the hard subproblem G2, 1 ≤ n, c, q ≤ 1 000 000. Because the input file size for subproblem G2

is about 100 MB, you cannot download it directly. Instead, we have provided a small Python 2 program
that will generate the file g2.in when executed.

Output specification

For each test case: Let yi be equal to 0 if ci is nonzero, or the tie color you found in event i if ci is
zero. Then, let zi be i ·yi. Output one line with a single number: the sum of z1 + . . .+zq modulo 109 +7.

http://ipsc.ksp.sk/ page 11 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Example

input

1

4 3 7

1 2 2

3 0 0

2 1 3

3 0 0

1 0 2

2 0 0

4 1 1

4 0 0

output

32

At the beginning, everyone has tie color 1 (including employee 3). Then, employees 2, 3 and 4 change
to color 3. Employee 1 then changes to color 2, but because his memo had importance level 0, everyone
else stays unchanged. Finally, employee 4 changes his color back to 1. His direct reports would change
too, but he doesn’t have any. Together, we get 1 · 1 + 2 · 0 + 3 · 3 + 4 · 0 + 5 · 3 + 6 · 0 + 7 · 1 = 32.

http://ipsc.ksp.sk/ page 12 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem H: Humble Captains

Every day just after school n children rush out of their classrooms onto the field to play football.
They choose two captains among themselves who then divide the remaining children into two teams. The
teams do not need to be of the same size – in the extreme case, an overconfident captain may challenge
all the other children to join their forces against him! Adam and Betka are the captains for today’s game.

Problem specification

There are m pairs of children who are friends. Two friends playing for the same team are more likely
to pass the ball to each other than two non-friends, so they increase the strength of their team. The total
strength of a team can therefore be defined as the number of pairs of friends within that team.

Adam thinks a football match is fun when the players score many goals. He would like to maximize
the sum of the two teams’ strengths. On the other hand, Betka believes the most enjoyable matches are
balanced ones, so she wants to minimize the difference between the teams’ strengths.

Find the largest possible sum of teams’ strengths and the smallest possible absolute difference between
teams’ strengths. (These are two independent problems – there may not necessarily be a team division
that satisfies both criteria.)

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

The first line of each test case consists of integers n (n ≥ 2) and m (0 ≤ m ≤ n · (n− 1)/2). Children
are labelled 1, . . . , n. Adam has number 1 and Betka number 2. Each of the following m lines contains
two integers ui, vi (1 ≤ ui < vi ≤ n) meaning that ui and vi are friends. Each pair of friends is only
listed once.

In the easy subproblem H1 we have n ≤ 24.
In the hard subproblem H2 we have n ≤ 200.

Output specification

For each test case, output a single line with two integers: the largest possible sum of teams’ strengths,
and the smallest possible difference between the teams’ strengths.

Example

input

2

3 3

1 2

2 3

1 3

3 1

1 3

output

1 1

1 0

In the first example, it does not matter whether Cyril (child 3) will play with Adam or with Betka.
Either way, one of the teams will have strength 1 and the other 0, so the sum of strengths is 1 and
their difference is 0. In the second example, letting Cyril play with Adam increases the sum of strengths
strength, but letting him play with Betka keeps the teams more balanced.

http://ipsc.ksp.sk/ page 13 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem I: Inexpensive Travel

Cycling is a cheap and healthy way of getting from A to B, plus it is a lot of fun. That is why
Peter invited Kamila to join him on an ambitious bike trip around the world. Unfortunately, cycling can
sometimes be hard – just imagine having to ascend 1500 meters on some winding road to a mountain
pass in the Alps. Different cyclists have a different degree of preference for the ascents. On one side of
the spectrum there is Kamila who would like to avoid going uphill completely. On the other side you will
find Peter who thinks that flat roads are painfully boring. Now Peter and Kamila have a problem – they
need to figure out which route to choose so that they would both enjoy the trip. Help them by finding
all the options they have.

Problem specification

There are n towns in the world. The towns are numbered 1 through n. Peter and Kamila want to
start the trip in town 1 and end it in town n. Each road is a directed edge from one town to another.
Each road has two parameters: the distance d ≥ 0 between its endpoints, and the ascent a ≥ 0. At least
one of them is nonzero.

Each cyclist can be described by a single real number p ∈ [0, 1]: their preference for ascents. The
value p determines the actual length of each edge for this particular cyclist: an edge with distance d and
ascent a will have the length pd+ (1− p)a. For example, Kamila has p = 0 and only cares about ascents.
Peter has p = 1: he ignores all ascents and only cares about the total distance.

Different values of p will obviously produce different shortest paths from 1 to n. Your task is to find
all values p where the set of shortest paths changes.

Formally, let S(p) be the set of all paths from 1 to n that have the shortest total length for a cyclist
with preference p. Find all values p such that 0 < p < 1 and the sets S(p− ε) and S(p+ ε) differ for any
ε > 0. (The two sets differ if there is some specific path from 1 to n that is among the shortest paths in
one setting but not in the other one. Note that p = 0 and p = 1 are by definition never valid answers.)

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line.

Each test case starts with a line containing two integers n and m: the number of towns and the
number of roads. Next, m lines follow. The i-th of these lines will contain four integers: xi, yi, di, and
ai (1 ≤ xi ≤ n; 1 ≤ yi ≤ n; 0 ≤ di; 0 ≤ ai; 0 < di + ai). These represent a directed road from the town
xi to the town yi, with distance di and ascent ai. Note that some of the roads may be self-loops (with
xi = yi) and that each pair of towns can be connected by multiple roads in each direction.

In the easy subproblem I1 you may assume that n ≤ 100, m ≤ 5000, and 0 ≤ di, ai ≤ 10 000.
In the hard subproblem I2 you may assume that n ≤ 5000, m ≤ 500 000, and 0 ≤ di, ai ≤ 500 000.
Because the input file size for subproblem I2 is about 100 MB, you cannot download it directly.

Instead, we have provided a small Python 2 program that will generate the file i2.in when executed.
Note that the implementation of this generator might matter.

Output specification

For each test case, find the number v of valid answers and their values p1 < p2 < · · · < pv. Output a
single line containing the integer v followed by the real numbers p1 through pv, in order. Output each pi
to at least 10 decimal places. Any answer that differs from the correct solution by at most 10−9 will be
accepted.

http://ipsc.ksp.sk/ page 14 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Note that in some test cases the set of shortest paths never changes. In such case we have v = 0 and
thus the output line will contain just a single zero. Notably, this includes all test cases in which it is
impossible to get from 1 to n. (In those test cases, each set S(p) is empty.)

Example

input

3

2 2

1 2 1 1

1 2 3 0

2 2

1 2 1 0

1 2 1 0

2 0

output

1 0.333333333333

0

0

In the first test case there are two roads from 1 to 2. The first road (distance 1, ascent 1) goes across
a small hill, the other (distance 3, ascent 0) takes a detour around the hill. The preference between these
roads changes at p = 1/3: any cyclist with p > 1/3 will prefer the first road while any cyclist with p < 1/3
will prefer the second one.

In the second test case there are two different roads, but they look the same to any cyclist. Each of
them is a shortest path for any value of p.

Finally, in the third case it is impossible to reach the destination.

http://ipsc.ksp.sk/ page 15 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem J: Juicy Dot Coms

As you shall soon discover, the dot coms from the title of this task have nothing to do with the dot
com boom. These are some dot coms from the previous generation.

You are given the files j1.com and j2.com. They know the passwords. The easy one might just tell
you the password, but it may take some convincing. The hard one will be, of course, harder. It seems. . .
who knows, broken? Some repairs may be in order.

Oh, and there’s an obvious trap in the easy one. Don’t fall into the trap. You’ll know the right
password once you get it.

Problem specification

The password is a sequence of upper- and lowercase English letters. Recover the password.

Input specification

The input is the corresponding dot com file.

Output specification

For each test case, your output should contain a single line with the password.

http://ipsc.ksp.sk/ page 16 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem K: Klingelt das Glockenspiel

You have just bought an amazing new Carillon: a musical instrument that consists of bells of various
sizes. You arranged all the bells into an interesting pattern and you mounted them onto your living room
wall. While doing so, you followed two simple rules. First, the bells could only be mounted at regularly
spaced grid points. Second, the smaller the bell, the higher you mounted it. For example, it could have
looked like this:

You then sat into your armchair facing the wall with all the bells. You relaxed, closed your eyes, and
enjoyed the music.

Problem specification

In each subproblem, you are given a different scenario that is consistent with the above description.
You are given a recording of the bells. Listen to the performance and identify a short English word you
should submit as your answer.

In the easy subproblem you will quickly discover that the music follows a nice regular pattern. The
hard subproblem, on the other hand, is just pure chaos.

Input specification

The input file is a stereo MP3 file of the recording.

Output specification

Output a single line with the English word determined by the recording. The word should be written
in UPPERCASE.

http://ipsc.ksp.sk/ page 17 of 19 licensed under CC BY-SA 3.0

https://en.wikipedia.org/wiki/Carillon


IPSC 2015 June 20, 2015

Problem L: Lunchtime!

A foreign restaurant recently opened in your area. You like the food they make, so you convinced
your friends to start having lunch there each day. But all the dishes have foreign names and you don’t
know which is which. You can only identify a dish after you order it.

There are p people in your group (including yourself) and the restaurant serves d different dishes.
Ordering at the restaurant works as follows: First, each person orders exactly one dish by specifying a
number between 1 and d. Then, the p dishes ordered by the group are brought to the table all at once,
in no particular order and with no information on which is which.

Your goal is to create a menu in your language: you want to map all numbers between 1 and d
to names of dishes in your language. Assuming that your friends are willing to cooperate, what is the
smallest number of lunches in which this can be done?

Problem specification

Find the smallest number of lunches ` such that there is a strategy for placing the orders in such a
way that after ` lunches you will know the names of all dishes. In the hard subproblem L2, you also
have to find the number of valid first day orders.

An order is a multiset of dish numbers your group ordered. For example, if p = 3 and d = 2, the
order {1, 1, 2} is the same as the order {2, 1, 1} but different from the order {1, 2, 2}. A valid first day
order is an order such that if your group makes the order on the first day, there will be a strategy that
solves our task by making `− 1 additional orders.

Input specification

The first line of the input file contains an integer t specifying the number of test cases. Each test case
is preceded by a blank line. Each test case consists of a single line containing the numbers p and d.

In the easy subproblem L1 we have t = 81, 1 ≤ p ≤ 9, and 1 ≤ d ≤ 9.
In the hard subproblem L2 we have t = 320, 1 ≤ p ≤ 16, and 1 ≤ d ≤ 20.

Output specification

Output a single line for each test case.
In the easy subproblem L1 the line should contain a single integer: the minimum number of days.
In the hard subproblem L2 the line should contain two integers: the minimum number of days,

and the number of valid first day orders.

Example (hard subproblem)

input

3

1 1

2 3

6 3

output

1 1

2 3

1 6

In the first example, note that the answer is not 0: you have to order the dish once to see what it is.
Here’s one optimal strategy for p = 2 and d = 3: On the first day, one of you will order dish 1 and

the other will order dish 2. On the second day, order dishes 1 and 3.
In the third example order one dish 1, two dishes 2, and three dishes 3.

http://ipsc.ksp.sk/ page 18 of 19 licensed under CC BY-SA 3.0



IPSC 2015 June 20, 2015

Problem M: Make*me-an+[integer!]

Esoteric languages are a popular subject of IPSC problems. The home page lists many cases where
we gave you an unusual language with strange syntax and even stranger semantics and tasked you with
doing something useful in it.

But then we realized: why bother with esoteric languages? Why don’t we just use a standard language
everyone already knows? After all, that won’t make it any easier for you!

Problem specification

In this problem, you will use JavaScript (as standardized by ECMA-262). All you have to do is
produce the integers from 0 to 1000. There’s just one catch: your programs can only use the characters
![]+-*.

Input specification

There is no input.

Output specification

The output should contain exactly 1001 lines. For each i between 0 and 1000, line i+1 of your output
should contain a valid JavaScript expression consisting only of the characters ![]+-* that evaluates to
a number (i.e., typeof(result) == "number") with value i. Note that the expression must not contain
any whitespace.

Additionally, your expressions must be short enough. For the easy subproblem M1, each JavaScript
expression should be no longer than 200 characters. For the hard subproblem M2, no expression should
exceed 75 characters.

Example output

+![]

+!![]

... (999 more lines)

Hints

Testing your solution: open your browser’s developer console, or install node.js.
Pro tip: JavaScript seems like an easy language to learn. And it is, except for all its quirks and weird

defaults. Unless you can score at least 21 out of 20 on quizzes such as this one, you shouldn’t just assume
some expression will throw a parse error or runtime error. Even strange expressions can be valid.

http://ipsc.ksp.sk/ page 19 of 19 licensed under CC BY-SA 3.0

https://nodejs.org/
http://davidshariff.com/js-quiz/

	A+B
	Bawdy Boil-brained Bugbear
	Chess Pieces
	Dijkstra's Nightmare
	Enclosure
	Familiar Couples
	Generating Synergy
	Humble Captains
	Inexpensive Travel
	Juicy Dot Coms
	Klingelt das Glockenspiel
	Lunchtime!
	Make*me-an+[integer!]

